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Chapter 1

Introduction

Optimization of geometries is a task that is highly interesting from a practical point
of view and is very commonly used in many fields of engineering and physics. To give
the reader an impression on how diverse those applications can be, we will list a few
examples.

Acoustics: One is often interested in the reduction of noise stemming from machines
or motors. For example road traffic, aircrafts or machine noise in large factory halls.
Usually this leads to a coupled problem of acoustic-structure-interaction. A nice overview
on possible numerical strategies and techniques for such problems is presented in [Mar02].
The interesting application of optimizing noise barriers is considered in [Duh06]. It is
also possible to optimize the structure of walls and ceilings in concert halls with respect
to acoustical effects. The Grand Hall of the Elbphilharmonie Hamburg represents a
famous case where such techniques were succesfully used [Kor18].

Elasticity: In architecture or engineering it is often desirable to minimize the amount
of material (for instance concrete or steel) under the constraint that the component
of interest (for instance a beam) is still able to resist a specific amount of stress. An
introduction to those topics is presented for example in [Her12] and [BS95]. The structure
of a truss that is obtained by geometry optimization is shown in Figure 1.1.

Figure 1.1: Optimized truss structure (image taken from [BS13, p. 2]).

Imaging technology: Structures consisting of different materials frequently appear in
medical applications. Electrical impedance tomography (EIT) is a medical imaging tech-
nique that is able to reconstruct the interfaces between those materials [Bor02], [CIN99].
The process of reconstruction leads to a shape optimization problem which is mathe-
matically analyzed in [Cal06], [ADK07] and [LS13]. The underlying interface problems
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6 Chapter 1 Introduction

are also closely related to those we will consider in this thesis.

There are many approaches and techniques to solve geometry optimization problems.
What they have in common is that a function depending on the geometry (shape func-
tion) has to be mimimized (or maximized). It is investigated how the shape function
behaves under variations of the geometry. This procedure is also known as sensitivity
analysis in the literature. There exist different possibilities to perfom such a variation
of the geometry and each possibility is linked to a branch of geometry optimization. We
will mention three important branches here.

Variation of parameters (parametric optimization): For this class of problems there
exists a finite set of parameters that describes the geometry (for example control points
of Bézier curves). The sensitivity analysis leads to a finite dimensional optimization
problem. This structure allows the application of many well understood finite dimen-
sional optimization algorithms. A drawback of this approach is that it is very restrictive,
since only geometries that can be parametrized by the chosen model are considered.

Variation of topology (topology optimization): We can also investigate how the shape
function behaves under topology changes (for example insertion of infinitesimal holes).
This approach allows much more freedom for the admissible geometries. A mathematical
foundation for topolgy optimization is given by [NS12].

Variation of boundaries (shape optimization): The idea to consider small perturba-
tions of the boundary goes back to J. Hadamard (1908) [Had08] and his research on
elastic plates. Since then a rigorous theory for many aspects of the optimization process
was developed, see for instance [SZ92], [DZ11]. The approach of shape optimization
was chosen for this thesis because the large quantity of mathematical theory makes it
possible to establish a solid theoretical framework for everything that is done afterwards.

Generic Gradient Method
In order to solve our shape optimization problem, we will develop a gradient-type opti-
mization method in this thesis. To set up a gradient method, several sub problems have
to be solved. We will motivate those sub problems by means of a generic optimization
problem on a (infinite dimensional) Banach space X . Each problem in the generic setting
has a counterpart in the shape optimization setting. To conclude this introduction and
provide an overview of this thesis, we will list all sub problems of the generic gradient
method together with their correspondent in shape optimization and references to the
associated chapters/sections.
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Banach space gradient method Shape optimization method

Minimization problem

Find a minimum of F : X → R, where X
is a Banach space.

Find a minimum of J : A → R, where A is
a set of shapes.

The structure of J and A is discussed in
Section 2.1 and 2.2.

Differentiability

Definition of the Fréchet derivative DF
as a linear mapping DF : X → L(X ,R).

Definition of the shape derivative dJ(Ω)[ϑ]
at Ω ∈ A in direction of ϑ ∈ X.

The differentiability theory will be presented
in Section 2.1, the velocity space X is

discussed in Section 2.3. In Chapter 3, dJ
is explicitly computed for a model problem.

Find a descent direction

For x0 ∈ X given, find y ∈ X s.t.
DF (x0)[y] < 0.

For Ω0 ∈ A given, find ϑ ∈ X s.t.
dJ(Ω0)[ϑ] < 0.

The definition of a descent direction and
further characterizations are presented in

Section 2.3.

Discretization of spaces and derivatives

Approximate X by a finite dimensional
subspace Xh and replace the derivative by
an approximation DhF : Xh → L(Xh,R).

Discretize shapes Ω→ Ωh, velocities
X→ Xh and the shape derivative

dJ → dhJ .

The representation and discretization of
shapes by means of level set functions is
discussed in Chapter 4. The discretization
of velocities and the shape derivative by
means of (unfitted) Finite Element spaces

is presented in Chapters 5, 6.

Find a discrete descent direction

For x0
h ∈ Xh given, find yh ∈ Xh s.t.

DhF (x0
h)[yh] < 0.

For Ω0
h given, find βh ∈ Xh s.t.
dJh(Ω0

h)[βh] < 0.

Discrete descent directions are discussed in
Section 5.2 and 6.2.2.

Optimization step

Choose a stepsize t ∈ R and update
x0
h → x0

h + tyh = x′h. We obtain
F (x′h) < F (x0

h).

Choose a stepsize t ∈ R and update
Ω0
h → Ω0

h + tβh.

The geometry update by means of a level
set transport is discussed in Chapter 4. An

optimization algorithm is presented in
Section 6.2.3. Numerical experiments are

presented in Chapter 7.
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Overview
In the second chapter we will present the mathematical background from the theory
of shape optimization which results in the definition of a derivative with respect to the
domain, the so called shape derivative or Eulerian semi-derivative. The presented frame-
work is taken from the standard literature in shape optimization. Chapter 3 introduces
two scalar PDE constrained shape optimization problems, namely a one-phase and a
two-phase/interface problem. Whereas the one-phase problem is a standard problem
from the literature, the interface problem is not. Therefore a rigorous proof of the ex-
istence of the shape derivative is presented. Chapter 4 discusses the implicit geometry
representation by means of a level set function and presents the appropriate numer-
ical treatment by suitable continuous and discontinuous Finite Element spaces. For
the entire thesis we will only consider lowest order (piecewise linear) Finite Elements.
In Chapter 5 and 6 we establish the numerical framework to solve shape optimization
problems of one-phase and two-phase type by means of the Finite Element method. We
choose unfitted Finite Element discretizations i.e. meshes that are not aligned with the
boundary or the interface. Two aspects of the numerical shape optimization procedure
are discussed in detail. First, we will compare two different discrete representations of
the shape derivative (volume expression and boundary expression) and conclude why
the volume expression is superior in a Finite Element context. Second, we will present
the construction of a specific descent direction with beneficial properties for the level set
transport. A proof of approximation properties of this descent direction will be included.
The final result of Chapter 6 will be a shape optimization algorithm for the two-phase
model problem. Chapter 7 presents various numerical examples that illustrate different
aspects of the optimization process.



Chapter 2

Theory of Shape Optimization

In this chapter the theoretical framework from the field of shape optimization will be
provided. It should be emphasized that it presents only a very small part of the whole
theory. We will restrict ourselves to those statements which are essential to set up
and understand the numerical methods in the following chapters. This means that we
will present one possibility to derive a "derivative with respect to the domain" without
giving any existence or uniqueness theorems of optimal solutions. More aspects are out
of scope for this thesis because the main focus will be on the numerical methods and the
derivation of a meaningful optimization algorithm. For a deeper investigation of many
aspects of shape optimization we refer to [DZ11], [SZ92] and [Stu15], where also many
of the definitions and proofs in the subsequent chapter are taken from.

2.1 Basic Definitions and Theorems
First we introduce the notion of a shape function.

2.1. DEFINITION [shape function] [DZ11, p. 170]
Let ∅ 6= Ω0 ⊂ Rd be a set and A ⊂ P(Ω0) = {Ω| Ω ⊂ Ω0}. Then a function

J : A → R Ω→ J(Ω)

is called shape function.

The superset Ω0 is often called holdall and any set Ω ∈ A admissible set. For a given
shape function a shape optimization problem can be formulated in the most general way
as:

find Ω ∈ A such that
J(Ω) = min

Ω′∈A
J(Ω′). (2.1)

To obtain statements on existence and/or uniqueness of optimal solutions there is no
straight forward approach. To apply well known theory on optimal solutions we would
need a Banach space structure on A which is in general not given. By restrictions on the
set A at least weaker structures can be achieved. One of the most common approaches
(which will also considered here) is to define A by the image of a reference domain under
a family of mappings i.e. A = {T (Ωref )|T ∈ T}. For a suitable choice of T a group

9



10 Chapter 2 Theory of Shape Optimization

structure (Micheletti group) together with a metric (Courant metric) can be observed.
A deeper analysis provides also existence statements for many problems (cf. [DZ11]).
In this thesis we will restrict ourselves to a definition of a directional derivative with
respect to the domain. This derivative can be further used to set up a gradient type
optimization algorithm.

Remark: From now on we will always consider bounded holdall domains Ω0 ⊂ Rd
with a piecewise C1 boundary.

We will choose T as a perturbation of the identity, which is closely related to the more
general velocity method [SZ92].

2.2. DEFINITION [perturbation of identity]
Let ϑ ∈ C∞c (Ω0;Rd) the associated perturbation of identity is defined as

Tt : Rd → Rd x 7→ x+ tϑ(x) (2.2)

where ϑ is extended to Rd by zero.

Remark: Of course Tt depends on the vector field ϑ. To be correct one should write
T ϑt . We will keep this in mind but will omit the upper index.

We chose the representation of Tt as a perturbation of the identity because it offers a
direct intuition, how the transformations act on a domain. The velocity method consid-
ers transformations Φt that are defined as the flow mapping of a corresponding ordinary
differential equation. As many proofs in the literature consider this approach, we will
show that our choice of Tt fits also into that setting. The next theorem states that Tt is
invertible for small t. Taking advantage of that fact we can define a time dependent vec-
tor field ϑ̂(t, x) := ϑ ◦T−1

t (x) which is related to Tt by an ordinary differential equation.

Ω

Ωt

Ω0

Figure 2.1: Initial domain, perturbed domain and holdall domain (image taken from
[Stu15] and modified)
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2.3. THEOREM [characterization of Tt] [DZ11, p. 180 ff.]

Let T (t, x) := Tt(x), then ∃τ > 0 s.t.

(i) The mapping T has the following properties:

∀x ∈ Rd, T (·, x) ∈ C1([0, τ ];Rd) and ∃c > 0 s.t.
∀x, y ∈ Rd, ‖T (·, x)− T (·, y)‖C1([0,τ ];Rd)≤ c|x− y|

∀t ∈ [0, τ ], x 7→ Tt(x) = T (t, x) is invertible

∀x ∈ Rd, T−1(·, x) ∈ C([0, τ ];Rd) and ∃ c > 0 s.t.
∀x, y ∈ Rd, ‖T−1(·, x)− T−1(·, y)‖C([0,τ ];Rd)≤ c|x− y|

(ii) ϑ̂ = ϑ ◦ T−1
t is well defined on [0, τ ]× Rd and uniformly Lipschitzian i.e.

∀x ∈ Rd, ϑ̂(·, x) ∈ C([0, τ ];Rd)
∃c > 0,∀x, y ∈ Rd, ‖ϑ̂(·, x)− ϑ̂(·, y)‖C([0,τ ];Rd)≤ c|x− y| .

(iii) Tt can be characterized as the flow of an ODE

∀x ∈ Rd, t ∈ [0, τ ], γ(t) := Tt(x) = T (t, x)
d

dt
γ(t) = ϑ̂(t, γ(t)), γ(0) = x .

(iv) t 7→ DTt and t 7→ (DTt)−1 belong to C
(
[0, τ ];C(Ω0,Rdxd)

)
(v) For t < τ , Tt : Ω0 → Ω0 is an homeomorphism with Tt(∂Ω0) = ∂Ω0

Proof. As ϑ ∈ C∞c (Ω0;Rd) , it is in particular uniformly Lipschitzian. Thus we can apply
Theorem 4.2 in [DZ11, p. 184] which yields (i) and (ii). Since (i) and (ii) are fulfilled,
we can apply Theorem 4.1 [DZ11, p. 181] to obtain statement (iii). For the statement
(iv) we refer to Theorem 2.16 in [SZ92, p. 51]. The continuity and the continuity of
the inverse of Tt has been already proven by the previous steps. We still need that Tt
maps Ω0 onto Ω0. This follows also from Theorem 2.16 in [SZ92, p. 51] if the following
property of ϑ̂ holds

x ∈ ∂Ω0 =⇒ ϑ̂(t, x) · n(x) = 0 (2.3)

where n(x) denotes the outer unit normal on ∂Ω0. For the singular points of ∂Ω0 where
the unit normal is not defined, we set n(x) = 0. We will show that (2.3) is valid to
conclude the proof. Let x ∈ ∂Ω0 where n(x) is well defined, then

Tt(x) = x+ tϑ(x) = x ,
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since ϑ has compact support in Ω0. Thus on ∂Ω0 we obtain

x = Tt(x) = T−1
t (x) .

Inserting this identity into ϑ̂(t, ·) yields

ϑ̂(t, x) · n(x) = ϑ(T−1
t (x)) · n(x) = ϑ(x) · n(x) = 0 .

We will point out the main consequences of the last theorem. For an initial domain
Ω ⊂ Ω0, we can define the perturbed domain (see Figure 2.1 for a sketch)

Ωt := Tt(Ω). (2.4)

For t sufficiently small (depending on ϑ) the following statements are valid due to The-
orem 2.3

• Tt(Ω0) = Ω0 (invariance of the holdall domain).

• Ωt ⊂ Ω0 (preservation of inclusion).

• ∂Ω ∈ C1 ⇒ ∂Ωt ∈ C1 (preservation of smooth boundaries).

• ∂Ω ∈ C0,1 ⇒ ∂Ωt ∈ C0,1 (preservation of Lipschitz boundaries).

Statements (ii) and (iii) show that our choice of Tt can be regarded as a special case
of the velocity method. This is very useful, since most of the results from the literature
consider transformations defined as a flow mapping. All these results are now directly
valid for Tt. Many statements of Theorem 2.3 are also later needed to derive differen-
tiability properties of quantities related to Tt.

Usually we will consider subsets with smooth or Lipschitz boundaries as admissible
sets i.e. A = {Ω ⊂ Ω0 : ∂Ω ∈ C1} or A = {Ω ⊂ Ω0 : ∂Ω ∈ C0,1}. As mentioned,
the characterization theorem (Theorem 2.3) ensures that for sufficiently small t also Ωt

is an admissible set, i.e. Ωt ∈ A. This is all we need to come up with a definition of
a derivative with respect to the domain, the so-called Eulerian semi-derivative or shape
derivative.
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2.4. DEFINITION [Eulerian semi-derivative/ shape derivative]
Let Ω ⊂ Ω0, then the Eulerian semi-derivative of J at Ω in direction of ϑ is defined as
the limit (if it exists)

dJ(Ω)[ϑ] = lim
t→0

J(Ωt)− J(Ω)
t

. (2.5)

(i) If the limit exists ∀ϑ ∈ C∞c (Ω0,Rd) and ∃k ≥ 0 such that the mapping

ϑ 7→ dJ(Ω)[ϑ] =: G(ϑ)

is linear and continuous with respect to the Ck(Ω0,R)-norm we call J shape dif-
ferentiable at Ω and G(·) its shape derivative.

(ii) The smallest integer k ≥ 0 for which G is continuous with respect to the Ck(Ω0,R)
norm is called the order of G.

Under further assumptions on the smoothness of the boundary of Ω, the shape derivative
can be represented as a functional that acts only on the boundary. This property was
first detected by J. Hadamard (1908) [Had08] for the special case of C∞ boundaries.
The statement for Ck+1 boundaries was first proven by J.-P. Zolésio in 1979 [Zol79] and
can be summarized in the famous structure theorem. For more details we refer to [DZ11,
Remark 3.2, p. 481].

2.5. THEOREM [structure theorem] [DZ11, p. 479 ff.]
Let Ω ⊂ Ω0 with compact boundary ∂Ω and let G be of order k ≥ 0. If ∂Ω ∈ Ck+1,
then the outward unit normal n of ∂Ω is well defined and ∃ g ∈ Ck(∂Ω)′ such that
∀ϑ ∈ Ckc (Ω0,Rd) holds

dJ(Ω)[ϑ] = 〈g, ϑ|∂Ω·n〉Ck(∂Ω) . (2.6)

If further g ∈ L1(∂Ω)

dJ(Ω)[ϑ] =
∫
∂Ω
g(ϑ · n) . (2.7)

Proof. See [DZ11, Theorem 3.6, p. 479] and [DZ11, Corollary 1, p. 480].

A direct consequence of the structure theorem which is of great importance for the
numerical treatment of shape optimization problems is stated in the next Corollary.

2.6. COROLLARY [normal components]
Let the assumptions of Theorem 2.5 be valid and ϑ1, ϑ2 ∈ Ckc (Ω0,Rd) then

ϑ1 · n = ϑ2 · n ⇒ dJ(Ω)[ϑ1] = dJ(Ω)[ϑ2]
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Proof. If the assumptions are valid, the shape derivative depends only on the normal
components of the vector fields ϑ1, ϑ2

dJ(Ω)[ϑ1] = 〈g, ϑ1|∂Ω·n〉Ck(∂Ω) = 〈g, ϑ2|∂Ω·n〉Ck(∂Ω) = dJ(Ω)[ϑ2] .

2.2 Shape Functions with PDE Constraints
In this thesis we will only deal with a special class of shape functions, namely PDE
constrained shape functions. We will clarify this term by the next definition.

2.7. DEFINITION [PDE constrained shape function]
Let V (Ω) be a Hilbert space of functions defined ∀Ω ∈ A. We consider a bilinear form

a(Ω, ·, ·) : V (Ω)× V (Ω)→ R

and a linear form

f(Ω, ·) : V (Ω)→ R .

Further let the following variational formulation be uniquely solvable ∀ Ω ∈ A:

find u(Ω) ∈ V (Ω) such that ∀v ∈ V (Ω)
a(Ω, u(Ω), v) = f(Ω, v) .

(2.8)

Then the solution u = u(Ω) of (2.8) is called state and a shape function which depends
implicity on the state i.e.

J(Ω) = J(Ω, u(Ω))

is called PDE constrained shape function.

The approach of our choice to derive the Eulerian semi-derivative of such an J is linked
to differentiability properties of the state u. Since Ωt ∈ A for small t and by construction
of the state equation, there exists a unique ut ∈ V (Ωt) such that

a(Ωt, ut, vt) = f(Ωt, vt) ∀vt ∈ V (Ωt) . (2.9)

And we can define

ut := ut ◦ Tt .

Although ut is defined on Ω it is not guaranteed that ut ∈ V (Ω). This leads to an
important property of the spaces V (Ω) which has to be valid and will be stated as an
assumption here:

ũ ∈ V (Ωt)⇔ ũ ◦ Tt ∈ V (Ω) . (A)
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Remark: Later we will choose V (Ω) = H1(Ω) or V (Ω) = H1
0 (Ω), which both fulfill

assumption (A) (see Lemma 3.1).

The crucial point for the existence of the Eulerian semi-derivative is the existence of
the so-called material derivative.

2.8. DEFINITION [material derivative]
Let assumption (A) be valid, then u̇ is defined as the weak/strong limit

u̇ = lim
t↘0

ut − u
t

,

if it exists.

The whole derivation using the material derivative approach including a rigorous ex-
istence proof of the Eulerian semi-derivative will be done in the next chapter for two
model problems.

2.3 Optimization Aspects
For the moment we will assume existence of the Eulerian semi-derivative and shape
differentiability of J(Ω) i.e ∃k ≥ 0 such that

dJ(Ω)[·] : C∞c (Ω0,Rd)→ R ϑ 7→ dJ(Ω)[ϑ]

is linear and bounded with respect to the Ckc (Ω0,Rd) norm. We state further an as-
sumption on the extension of dJ(Ω):

dJ(Ω) is a linear and bounded functional on X :=
[
H1

0 (Ω0)
]d

. (B)

If we can find a smooth vector field ϑ ∈ C∞c (Ω0,Rd) that fulfills

dJ(Ω)[ϑ] < 0 ,

we can as well find τ > 0 such that ∀t < τ holds:

J(Ωt)− J(Ω)
t

< 0 ⇒ J(Ωt) < J(Ω) .

So we reduced the value of our shape function. This motivates the following definition.
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2.9. DEFINITION [descent direction]
Let assumption (B) be valid, then a vector field β ∈ X is called descent direction of J(Ω)
if

dJ(Ω)[β] < 0 .

If even holds that

β ∈ arg min
‖ϑ‖X=1

dJ(Ω)[ϑ] , (2.10)

we call β a steepest descent.

Considering the inner product on X =
[
H1

0 (Ω0)
]d

b(β, ψ) =
∫

Ω0

∇β : ∇ψ + β · ψ

and the structure theorem 2.5, we get some characterizations of a steepest descent.

2.10. LEMMA [characterizations of a steepest descent]
Let β′ be the Riesz representative of −dJ(Ω) i.e

b(β′, ψ) = −dJ(Ω)[ψ] ∀ψ ∈ X .

Let further the assumptions of the structure theorem 2.5 be valid with g ∈ L2(∂Ω), then
the following expressions define a steepest descent

(i) β1 := (‖β′‖X)−1β′

(ii) any β2 ∈ X with ‖β2‖X= 1 and β2 · n = β1 · n on ∂Ω

(iii) β3 := (‖β̃‖X)−1β̃ with β̃ ∈ X such that β̃ · n = −g on ∂Ω

Proof. (i) Let ψ ∈ X be arbitrary with ‖ψ‖X= 1, then we compute

dJ(Ω)[β1]− dJ(Ω)[ψ] = (‖β′‖X)−1dJ(Ω)[β′] + b(β′, ψ)
= −(‖β′‖X)−1b(β′, β′) + b(β′, ψ)
≤ −‖β′‖X+‖β′‖X‖ψ‖X
= 0 .

Where we used Cauchy Schwarz in the third line. Thus β1 is a minimizer and
normalized by construction.

(ii) The normal components of β1 and β2 coincide, thus we can apply Corollary 2.6
which yields

min
‖ϑ‖X=1

dJ(Ω)[ϑ] = dJ(Ω)[β1] = dJ(Ω)[β2]
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(iii) Let ψ ∈ X be arbitrary with ‖ψ‖X= 1 and Ctr the constant from the trace theorem,
then the structure theorem yields

dJ(Ω)[β3]− dJ(Ω)[ψ] = −(‖β̃‖X)−1
∫
∂Ω
g2 −

∫
∂Ω
g(ψ · n)

≤ −(‖β̃‖X)−1‖g‖2L2(∂Ω)+‖g‖L2(∂Ω)‖ψ · n‖L2(∂Ω)

≤ −(‖β̃‖X)−1‖β̃‖2XC2
tr + C2

tr‖β̃‖X
= 0 .

Remark: Note that if we omit the scaling for β1 and β3, we still obtain a descent
direction. The lemma shows that a steepest descent is anything else but unique. This
gives us some freedom in the choice of the descent direction in the optimization method
and we can choose a velocity field which is best suited for the numerical treatment of
the optimization problem.

For the Riesz representative β′ and the steepest descent β1 from the previous lemma, an
additional regularity result is valid.

2.11. LEMMA [regularity of β1] cf.[BEH+17]
Let the assumptions of Lemma 2.10 be valid and ∂Ω ∈ C1 then

β1 ∈
[
H1

0 (Ω0)
]d
∩
[
H2(Ω0\Ω)

]d
∩
[
H2(Ω)

]d
Proof. For the Riesz representative of −dJ(Ω) holds

b(β′, ψ) = −dJ(Ω)[ψ] ∀ψ ∈ X .

By the structure theorem this can be rewritten as

b(β′, ψ) = −
∫
∂Ω
g(ψ · n) ∀ψ ∈ X .

This is the weak formulation of the vector valued interface problem

−∆β′ + β′ = ~0 in Ω1 and Ω2[[
β′
]]

= ~0 on Γ[[
∇β′ n

]]
= g n on Γ

β = ~0 on ∂Ω0,

with the subdomains Ω1 := Ω, Ω2 := Ω0\Ω and the interface Γ := ∂Ω. The jump
operator [[·]] on the interface is defined by

[[v]] = v|Ω1−v|Ω1 .
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The regularity of solutions of such elliptic interface problems is a standard result from
the literature and states

‖β′‖[H1
0 (Ω0)]d+‖β

′‖[H2(Ω1]d+‖β
′‖[H2(Ω2)]d≤ C‖g‖H1/2(Γ) .

A proof for d = 2 can be found in [CZ98, Theorem 2.1]. Since the regularity result holds
for β′, the descent direction β1 has the same regularity.



Chapter 3

Shape Optimization for two Model
Problems

In this section the theory from the previous chapter will be applied on two scalar model
problems. The first problem is a two-phase problem and physically motivated. A rigorous
proof of the existence of the corresponding shape derivative will be presented. Similarly
to the statement of the structure theorem, under additional regularity assumptions, the
shape derivative can be reformulated as a functional that acts only on the interface. The
second problem is well known in the literature and will be used later to highlight some
aspects of the numerical analysis. Volume and boundary expression of the corresponding
shape derivative will be quoted from the literature for this case.

3.1 Stationary Heat Transport Problem
We consider a bounded domain Ω ⊂ R2 wich can be decomposed into two subdomains
Ω1 and Ω2. The subdomains are separated by the interface Γ := Ω1 ∩ Ω2. Further we
assume that Ω1 is fully surrounded by Ω2 which implies Γ ∩ ∂Ω = ∅. The full domain
Ω can be regarded as a room which is heated by a heat source located inside Ω1. Some
parts of the wall can be fully isolated whereas the remaining parts allow some heat flux.
We are interested in minimizing the deviation of the temperature distribution from a
reference temperature distribution. So let u = u(x, y) denote the temperature in Ω and
u ∈ C1(Ω) is some reference temperature distribution. Then we seek to minimize the
shape function

J(Ω) =
∫
Ω

(u− u)2 → min . (3.1)

Where u solves the following interface problem:

−div(α∇u) = f in Ω, (3.2)
[[u]] = 0 on Γ, (3.3)

[[−α∇u · nΓ]] = 0 on Γ, (3.4)
∇u · n+ γu = 0 on ∂Ω , (3.5)

19
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where nΓ denotes the outer unit normal of Γ = ∂Ω1 and the interface jump of a function
v is defined by

[[v(x)]] := lim
h↘0

v(x− hnΓ)− v(x+ hnΓ) .

Remark: In the context of shape optimization u is often referred to as the state and
equations (3.2)-(3.5) as the state equation. We will adopt this notion.

Ω2ΓΩ1

nΓ

Figure 3.1: Sketch of the geometrical setting.

The diffusion coefficient α is assumed to be discontinuous over the interface and domain
wise constant,

α =
{
α1 ∈ R in Ω1,

α2 ∈ R in Ω2 .

The heat source f is only active inside Ω1

f =
{
f1 > 0 in Ω1,

0 in Ω2 .

For ease of presentation we fix f1 ∈ R but the derivation of the shape derivative can be
easily extended to the case f1 ∈ H1(Ω). Conditions (3.3) and (3.4) enforce continuity
of the temperature and the heat flux over the interface. Let further the boundary be
decomposed into two parts ∂Ω = ∂ΩR ∪ΩN with meas(∂ΩR)d−1 > 0. The heat transfer
coefficient γ is also piecewise defined:

γ =
{
γ0 > 0 on ∂ΩR,

0 on ∂ΩN .

The physical meaningful notion of the Robin boundary condition would be

−α∇u · n = γ(u− uref ) (3.6)



3.1 Stationary Heat Transport Problem 21

with a reference temperature uref . Equation (3.6) shows that the heat flux is propor-
tional to the temperature difference between u and uref . For simplicity we set uref to
zero in our case. According to this comment, the piecewise defined heat transfer coeffi-
cient γ and condition (3.5) model an isolated part of the wall (∂ΩN ) and another part
that allows heat flux (∂ΩR).

In our example only the interface Γ will be moved whereas the outer boundary ∂Ω stays
fixed, hence Ω is a natural choice for the holdall domain. Starting with Ωi i ∈ {1, 2} as a
reference domain we can take any ϑ ∈ C∞c (Ω,R2) and apply the corresponding perturba-
tion Tt from the previous chapter. This defines the perturbed subdomains Ωi,t := Tt(Ωi)
and the perturbed interface Γt := Tt(Γ) with outer unit normal nΓt . Similarly we get

αt =
{
α1 in Ω1,t,

α2 in Ω2,t

and

ft =
{
f1 > 0 in Ω1,t,

0 in Ω2,t .

Please note that by construction f = ft ◦ Tt and α = αt ◦ Tt. Since Tt keeps the
outer boundary ∂Ω fixed, nothing has to be changed there. Canonically this defines the
perturbed state equation i.e. we seek ut (perturbed state) that solves:

−div(α∇ut) = ft in Ω (3.7)
[[ut]] = 0 on Γt (3.8)

[[−αt∇ut · nΓt ]] = 0 on Γt (3.9)
∇ut · n+ γu = 0 on ∂Ω (3.10)

The state equation and the perturbed state equation can be reformulated as a variational
problem which reads as:

find u ∈ H1(Ω) such that ∀v ∈ H1(Ω)
2∑
i=1

αi

∫
Ωi
∇u · ∇v +

∮
∂ΩR

γ0uv =
∫

Ω
fv

(3.11)

and similarly

find ut ∈ H1(Ω) such that ∀ṽ ∈ H1(Ω)
2∑
i=1

αi

∫
Ωi,t
∇ut · ∇ṽ +

∮
∂ΩR

γ0utṽ =
∫

Ω
ftṽ .

(3.12)

Please note that the outer boundary ∂Ω stays invariant under transformation.

The first important observation is that via the transformation Tt we get an isomorphism
on H1(Ω). We will state this as a lemma.
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3.1. LEMMA [H1 isomorphism property]
For the spaces H1(Ω) and H1

0 (Ω) the isomorphism assumption (A) is valid i.e.

ṽ ∈ H1(Ω)⇔ ṽ ◦ Tt ∈ H1(Ω)
w̃ ∈ H1

0 (Ω)⇔ w̃ ◦ Tt ∈ H1
0 (Ω)

Proof. The proof can be found in [Zie12, p. 52, Theorem 2.2.2].

Following the notation from the previous chapter we define ut = ut ◦ Tt. Now we can
insert ut = ut ◦ T−1

t into (3.12) and application of the transformation theorem on the
volume integrals yields∫

Ωi,t
∇ut · ∇ṽ =

∫
Ωi,t
∇
(
ut ◦ T−1

t

)
· ∇

(
(ṽ ◦ Tt) ◦ T−1

t

)
=
∫

Ωi,t

(
DT−Tt ∇ut

)
◦ T−1

t ·
(
DT−Tt ∇(ṽ ◦ Tt)

)
◦ T−1

t

=
∫

Ωi
det (DTt)

(
DT−1

t DT−Tt ∇ut
)
· ∇ (ṽ ◦ Tt)

and ∫
Ω
ftṽ =

∫
Ω
det (DTt) f(ṽ ◦ Tt) .

To simplify notation we define further auxilliary quantities on Ω0 = Ω

ξ(t) := det(DTt), (3.13)
A(t) := ξ(t)(DTt)−1(DTt)−T , (3.14)
B(t) := (DTt)−T , (3.15)
C(t) := DTt . (3.16)

Remark: Of course all these quantities depend also on the space variable x but we will
omit this in the notation for the sake of convenience. When the transformation theorem
is applied, we should take the absolute value of the determinant ξ(t). However, we will
see that ξ(t) is positive for small t, therefore we omit the absolute value.

Making use of the previous Lemma and the fact that ut = ut on ∂Ω, we can now
rewrite (3.12) as a variational problem on the reference subdomains.

find ut ∈ H1(Ω) such that ∀v ∈ H1(Ω)
2∑
i=1

αi

∫
Ωi

(
A(t)∇ut

)
· ∇v +

∮
∂ΩR

γ0u
tv =

∫
Ω
ξ(t)fv .

(3.17)

To obtain existence of the material derivative we would like to differentiate under the
integral in (3.17). To come up with such a statement we need some more properties of
the auxiliary quantites (3.13)-(3.16), stated by the next two lemmas.
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3.2. LEMMA [positivity and ellipticity]
∃ τ > 0, η1, η2 > 0 such that ∀ t ∈ [0, τ ], ζ ∈ Rd

(i) ξ(t) > 0 ∀x ∈ Ω0

(ii) η1|ζ|2≤ A(t)ζ · ζ ≤ η2|ζ|2

Proof. From Theorem 2.3 we obtain directly that ξ(·) ∈ C
(
[0, τ ];C(Ω0)

)
and A(·) ∈

C
(
[0, τ ];C(Ω0,Rd×d)

)
with ξ(0) = 1 and A(0) = I. Thus we can apply Proposition 2.12

in [Stu15, p. 16] which yields the claim.

3.3. LEMMA [differentiability properties]
For the auxiliary quantities (3.13)-(3.16) the following limit properties hold:

(i) lim
t↘0

1
t (ξ(t)− 1) = div(ϑ) =: ξ′(0) in C(Ω0,R)

(ii) lim
t↘0

1
t (C(t)− Id) = Dϑ =: C ′(0) in C

(
Ω0,Rd×d

)
(iii) lim

t↘0
1
t (B(t)− Id) = −DϑT =: B′(0) in C

(
Ω0,Rd×d

)
(iv) lim

t↘0
1
t (A(t)− I) = div(ϑ)I − (Dϑ+DϑT ) =: A′(0) in C

(
Ω0,Rd×d

)
Proof. By the characterization theorem (Theorem 2.3) we can identify Tt with a flow
mapping and the corresponding speed ϑ̂ is well defined. Lemma 2.31 in [SZ92, p. 64]
then states exactely (i).

For the second statement we directly compute for t sufficiently small

lim
t↘0

1
t
(D(Tt)−D(T0)) = lim

t↘0

1
t
(tDϑ) = Dϑ

which yields the claim.

For statement (iii) we mimic the proof in [Stu15, p. 17]. For two Banach spaces X,Y
the mapping inv : A 7→ A−1 with A ∈ L(X,Y ) and A−1 ∈ L(Y,X) is continuously
differentiable with Fréchet derivative inv′(A)(B) = −A−1BA−1 (see [AE01, p. 222]).
By the chain rule we obtian

d

dt
(inv(C(t))|t=0= inv′(C(0))(C ′(0)) = −I−1DϑI−1 = −Dϑ .

Finally we can interchange the limit and the transposed which yields the claim.

Statement (iv) follows directy by the product rule.

Remark: For the previous proofs we used the notation Ω0 for the holdall domain. Since
for our two-phase problem holds Ω0 = Ω, we will replace Ω0 by Ω in the further notation.



24 Chapter 3 Shape Optimization for two Model Problems

The next theorem ensures now that we can differentiate under the integral in (3.17)
and that the material derivative exists in a strong sense.

3.4. THEOREM [existence of the material derivative]
The sequence wt = 1

t

(
ut − u

)
converges strongly in H1(Ω) as t ↘ 0 and the limit u̇ is

characterized as the unique solution of the variational problem

find u̇ ∈ H1(Ω) such that ∀v ∈ H1(Ω)
2∑
i=1

αi

∫
Ωi
∇u̇ · ∇v +

∮
∂ΩR

γ0u̇v = −
2∑
i=1

αi

∫
Ωi

(
A′(0)∇u

)
· ∇v +

∫
Ω
ξ′(0)fv .

(3.18)

Proof. We consider the following triple norm |‖v‖|2:=
2∑
i=1

αi
∫

Ωi ∇v ·∇v+
∮
∂ΩR γ0v

2 which

is equivalent to the H1 norm. By the uniform ellipticity of A(t) we have

min{η1, 1}|‖ut‖|2≤
2∑
i=1

αi

∫
Ωi

(
A(t)∇ut

)
· ∇ut +

∮
∂ΩR

γ0(ut)2,

with the ellipticity constant η1 as in Lemma 3.2. According to Lemma 3.3, ∃ τ > 0 such
that ξ(t) > 0 for t < τ . Thus, we can use the variational problem to bound the right
hand side for t < τ

2∑
i=1

αi

∫
Ωi

(
A(t)∇ut

)
· ∇ut +

∮
∂ΩR

γ0(ut)2 =
∫

Ω
ξ(t)fut ≤ C‖ξ‖C([0,τ ])‖f‖L2(Ω)|‖ut‖| ,

hence |‖ut‖| is uniformly bounded. Using the definition of the triple norm and the
variational problems (3.11) and (3.17), we can further estimate

|‖ut − u‖|2 =
2∑
i=1

αi

∫
Ωi
∇(ut − u) · ∇(ut − u) +

∮
∂ΩR

γ0(ut − u)2

=
2∑
i=1

αi

∫
Ωi

(
(I −A(t))∇ut

)
· ∇(ut − u)

+
2∑
i=1

αi

∫
Ωi

(
A(t)∇ut

)
· ∇(ut − u) +

∮
∂ΩR

γ0u
t(ut − u)

−
( 2∑
i=1

αi

∫
Ωi
∇u · ∇(ut − u) −

∮
∂ΩR

γ0u(ut − u)
)

=
2∑
i=1

αi

∫
Ωi

(
(I −A(t))∇ut

)
· ∇(ut − u)

+
∫

Ω
(ξ(t)− 1)f(ut − u)

≤ C
(
‖I −A(t)‖C(Ω,Rd×d)|‖u

t‖|+‖ξ(t)− 1‖C(Ω,R)

)
|‖ut − u‖| .
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We can divide by |‖ut − u‖| and recall the properties of A(t) and ξ(t) from Lemma 3.3
as well as the boundedness of ‖ut‖H1(Ω). Hence, the remaining right hand side tends to
zero as t ↘ 0 and thus ut → u in the triple norm (H1 norm). Dividing by t2 in every
step in the last computation we arrive at

|‖wt‖|2 ≤ C

t

( 2∑
i=1

αi

∫
Ωi

(
(I −A(t))∇ut

)
· ∇wt

)

+ C

t

(∫
Ω

(ξ(t)− 1)fwt
)

≤ C‖1
t
(I −A(t))‖C(Ω,Rd×d)|‖u

t‖||‖wt‖|

+ C‖1
t
(ξ(t)− 1)‖C(Ω)‖f‖L2(Ω)|‖wt‖| .

Dividing by |‖wt‖| leaves only bounded terms on the right hand side. The boundedness
for ut has been shown and the boundedness of the difference quotients is stated in Lemma
3.3. Since |‖wt‖| is uniformly bounded, we can extract a weak convergent subsequence
wtk with weak limit w. For v ∈ H1(Ω) arbitrary but fixed we have following equality

2∑
i=1

αi

∫
Ωi
∇wtk · ∇v +

∮
∂Ω0

γ0w
tkv =

2∑
i=1

αi

∫
Ωi

( 1
tk

(I −A(tk))∇utk
)
· ∇v

+
∫

Ω

( 1
tk

(ξ(tk)− 1)
)
fv .

Now we can pass to the limit tk ↘ 0 on both sides and arrive at
2∑
i=1

αi

∫
Ωi
∇w · ∇v +

∮
∂Ω0

γ0wv =
2∑
i=1

αi

∫
Ωi

(
−A′(0)∇u

)
· ∇v +

∫
Ω
ξ′(0)fv . (3.19)

Since v ∈ H1(Ω) was choosen arbitrary, w is also characterized as the unique solution
of the elliptic problem (3.19). This characterization implies that any subsequence of wt
contains another subsequence which weakly converges towards w. Taking advantage of
the fact that a bounded sequence in R is either convergent or has at least two accumula-
tion points, we get additionally that also the full sequence wt converges weakly towards
w and it remains to show strong convergence. By the two upper equalities we get

lim
t↘0

(
|‖wt‖|

)
= lim

t↘0

( 2∑
i=1

αi

∫
Ωi
∇wt · ∇wt +

∮
∂ΩR

γ0(wt)2
)

= lim
t↘0

( 2∑
i=1

αi

∫
Ωi

(1
t
(I −A(t))∇ut

)
· ∇wt +

∫
Ω

(1
t
(ξ(t)− 1)

)
fwt

)

=
2∑
i=1

αi

∫
Ωi

(
−A′(0)∇u

)
· ∇w +

∫
Ω

(
ξ′(0)

)
fw

=
2∑
i=1

αi

∫
Ωi
∇w · ∇w +

∮
∂ΩR

γ0ww = |‖w‖| .
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Thus we have shown so far that wt weakly converges towards w and |‖wt‖|→ |‖w‖|.
A well known result from functional analysis states that in uniformly convex Banach
spaces (especially Hilbert spaces), weak convergence and convergence of norms imply
strong convergence (cf. [Bre10, Proposition 3.32, p.78]). Thus we have shown strong
convergence wt → w and rename w = u̇.

Also the shape function J can be rewritten as an integral over the reference domain:

J(Ωt) :=
∫

Ωt
(ut − ū)2 =

∫
Ω
ξ(t)(ut − ū ◦ Tt)2 . (3.20)

According to the last Theorem, we are allowed to differentiate under the integral in
(3.20), which yields a first expression of the Eulerian semi-derivative

dJ(Ω)[ϑ] =
∫

Ω
ξ′(0)(u− ū)2 − 2

∫
Ω

(∇ū · ϑ)(u− ū) + 2
∫

Ω
u̇(u− ū)

=
∫

Ω
div(ϑ)(u− ū)2 − 2

∫
Ω

(∇ū · ϑ)(u− ū) + 2
∫

Ω
u̇(u− ū) .

(3.21)

This is still unsatisfactory, since we have an implicit dependency on ϑ via u̇. That means
to evaluate dJ(Ω) at ϑ, we would have to solve the elliptic problem (3.18) first, which is
a different one for every ϑ. To eliminate the material derivative we define an auxiliary
problem, the adjoint problem.

3.5. DEFINITION [adjoint problem]
Let u be the unique solution of (3.11), then the unique solution of the elliptic problem

find u∗ ∈ H1(Ω) such that ∀v ∈ H1(Ω)
2∑
i=1

αi

∫
Ωi
∇u∗ · ∇v +

∮
∂ΩR

γ0u
∗v =

∫
Ω

2(u− ū)v
(3.22)

is called the adjoint state.

Now we are able to eliminate the material derivative in (3.21) by a substitution trick.

3.6. LEMMA [volume expression]
Let u, u∗ be the solutions of (3.11) and (3.22), then the Eulerian semi-derivative of J(Ω)
can be represented as

dJ(Ω)[ϑ] =
∫

Ω
div(ϑ)

(
(u− ū)2 + fu∗

)
−
∫

Ω
2(∇ū · ϑ)(u− ū)

−
2∑
i=1

αi

∫
Ωi

div(ϑ)∇u · ∇u∗ +
2∑
i=1

αi

∫
Ωi

(
(Dϑ+DϑT )∇u

)
· ∇u∗

(3.23)
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Proof. We test the adjoint problem with the material derivative u̇ and use the variational
formulations (3.22) and (3.18) which yields

∫
Ω

2(u− ū)u̇ =
2∑
i=1

αi

∫
Ωi
∇u∗ · ∇u̇+

∮
∂ΩR

γ0u
∗u̇

= −
2∑
i=1

αi

∫
Ωi

(
A′(0)∇u

)
· ∇u∗ +

∫
Ω
ξ′(0)fu∗ .

Inserting the above identity into (3.21) and using the further identities

A′(0) = div(ϑ)I −Dϑ+DϑT

ξ′(0) = div(ϑ)

yields the claim.

In spirit of the structure theorem we would finally like to find a formulation of dJ(Ω)[·]
that consists only of interface integrals. The next lemma shows that such an expression
exists under additional regularity assumptions.

3.7. LEMMA [interface expression]
Let u, u∗ ∈ H2(Ω1) ∩ H2(Ω2) and the interface ∂Ω1 = Γ ∈ C1, then (3.23) can be
equivalently represented by

dJ(Ω)[ϑ] =
∮

Γ
(f1u

∗ + 2 [[α(∇u · nΓ)(∇u∗ · nΓ)]]− [[α∇u · ∇u∗]])ϑ · nΓ . (3.24)

Proof. We follow some ideas from [Ber10] and [LS13].

At first we observe that on the subdomains Ωi, i ∈ {1, 2} holds

div(ϑ(u− ū)2) = div(ϑ)(u− ū)2 + 2(u− ū)ϑ · ∇u− 2(u− ū)ϑ · ∇ū .

Using the above identity and Gauss’s theorem yields for expression (3.21)

dJ(Ω)[ϑ] =
∫

Ω
div(ϑ)(u− ū)2 − 2

∫
Ω

(∇ū · ϑ)(u− ū) + 2
∫

Ω
u̇(u− ū)

=
2∑
i=1

∫
Ωi

div(ϑ(u− ū)2) + 2
∫

Ω
(u− ū) (u̇−∇u · ϑ)

=
∮

Γ
[[(u− ū)2]]ϑ · nΓ + 2

∫
Ω

(u− ū) (u̇−∇u · ϑ)

= 2
∫

Ω
(u− ū) (u̇−∇u · ϑ) .

(3.25)

The interface integral vanishes due to ū ∈ C1(Ω) and the continuity condition (3.3).
We will also rewrite the right hand side of the variational formulation for the material
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derivative (3.18) summand by summand. Similarly as before we obtain by Gauss’s
theorem

S1 :=
2∑
i=1

∫
Ωi

div(ϑ)fv =
2∑
i=1

∫
Ωi

div(ϑfv)−
∫

Ω
f∇v · ϑ =

∮
Γ

[[fv]]ϑ · nΓ −
∫

Ω
f∇v · ϑ .

(3.26)

To modify also the second summand we need the following identity for u, v ∈ H1(Ω) ∩
H2(Ωi) with i ∈ {1, 2} (see [Ber10, p. 14])

ϑ · ∇(∇u · ∇v) +
(
(Dϑ+DϑT )∇u

)
· ∇v = ∇(ϑ · ∇u) · ∇v +∇(ϑ · ∇v) · ∇u . (3.27)

A proof can be found in the Appendix (Proposition A.1). By (3.27) and integration by
parts on the subdomains we obtain for v ∈ H1(Ω) ∩H2(Ωi)

S2 := −
2∑
i=1

αi

∫
Ωi

div(ϑ)∇u · ∇v +
2∑
i=1

αi

∫
Ωi

(
(Dϑ+DϑT )∇u

)
· ∇v

=
2∑
i=1

αi

∫
Ωi
ϑ · ∇ (∇u · ∇v)−

∮
Γ

[[α∇u · ∇v]]ϑ · nΓ +
2∑
i=1

αi

∫
Ωi

(
(Dϑ+DϑT )∇u

)
· ∇v

(3.27)
=

2∑
i=1

αi

∫
Ωi

(∇(ϑ · ∇u) · ∇v +∇(ϑ · ∇v) · ∇u)−
∮

Γ
[[α∇u · ∇v]]ϑ · nΓ

=
2∑
i=1

αi

∫
Ωi

(−∆v(ϑ · ∇u)−∆u(ϑ · ∇v))

+
∮

Γ
([[(αϑ · ∇u)(∇v · nΓ)]] + [[(αϑ · ∇v)(∇u · nΓ)]])−

∮
Γ

[[α∇u · ∇v]]ϑ · nΓ .

(3.28)

Due to the regularity assumption we can set v = u∗ and together with (3.26)/(3.28) that
yields

2∑
i=1

αi

∫
Ωi
∇u̇ · ∇u∗ +

∮
∂ΩR

γ0u̇u
∗ = S1 + S2

=
2∑
i=1

αi

∫
Ωi
−∆u∗(ϑ · ∇u)−

∫
Ω

(∆u+ f)∇u∗ · ϑ+
∮

Γ
[[fv]]ϑ · nΓ

+
∮

Γ
([[(αϑ · ∇u)(∇u∗ · nΓ)]] + [[(αϑ · ∇u∗)(∇u · nΓ)]])−

∮
Γ

[[α∇u · ∇u∗]]ϑ · nΓ .

(3.29)

By assumption u is a strong solution of (3.2) and thus the second volume integral
vanishes. Similarly to the proof for the volume expression, we can eliminate the material
derivative in (3.25)
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dJ(Ω)[ϑ] = 2
∫

Ω
(u− ū) (u̇−∇u · ϑ)

(3.22)
=

2∑
i=1

αi

∫
Ωi
∇u̇ · ∇u∗ +

∮
∂ΩR

γ0u̇u
∗ −

∫
Ω

2(u− ū)∇u · ∇ϑ

(3.29)
=

2∑
i=1

αi

∫
Ωi
− (∆u∗ + 2(u− ū))ϑ · ∇u+

∮
Γ

[[fu∗]]ϑ · nΓ

+
∮

Γ
([[(αϑ · ∇u)(∇u∗ · nΓ)]] + [[(αϑ · ∇u∗)(∇u · nΓ)]])−

∮
Γ

[[α∇u · ∇u∗]]ϑ · nΓ

=
∮

Γ
[[fu∗]]ϑ · nΓ +

∮
Γ

( [[(αϑ · ∇u)(∇u∗ · nΓ)]]︸ ︷︷ ︸
J1

+ [[(αϑ · ∇u∗)(∇u · nΓ)]]︸ ︷︷ ︸
J2

)

−
∮

Γ
[[α∇u · ∇u∗]]ϑ · nΓ .

The volume integral vanishes because u∗ is a strong solution to (3.22). We found an
expression of the shape derivative that consists only of interface integrals but it has
not the desired form yet. Since [[u]] = [[u∗]] = 0 on Γ, the tangential gradient ∇Γu =
∇u|Γ−nΓn

T
Γ∇u|Γ is single valued on the interface (in the L2 sense) i.e.

[[∇Γu]] = 0 in L2(Γ) (3.30)
[[∇Γu

∗]] = 0 in L2(Γ) . (3.31)

A proof of this statement can be found in the Appendix (Proposition A.2). This is also
the point where we need the smoothness assumption Γ ∈ C1. Taking advantage of the
continuity of ϑ, we can rewrite the jump terms J1, J2 and (3.30) implies

J1 = [[(αϑ · ∇u)(∇u∗ · nΓ)]] = [[(αϑ · ((∇u · nΓ)nΓ +∇Γu)(∇u∗ · nΓ)]]
= [[α(∇u · nΓ)(∇u∗ · nΓ)]]ϑ · nΓ + [[α∇u∗ · nΓ]]ϑ · ∇Γu

= [[α(∇u · nΓ)(∇u∗ · nΓ)]]ϑ · nΓ .

(3.32)

Similarly, (3.31) implies

J2 = [[(αϑ · ∇u∗)(∇u · nΓ)]] = [[α(∇u∗ · nΓ)(∇u · nΓ)]]ϑ · nΓ . (3.33)

Further we have by definition of the source (f2 = 0) and [[u∗]] = 0

[[fu∗]] = [[f ]]u∗ = f1u
∗ . (3.34)

Inserting the last three identities (3.32),(3.33), (3.34) yields

dJ(Ω)[ϑ] =
∮

Γ
(f1u

∗ + 2 [[α(∇u · nΓ)(∇u∗ · nΓ)]]− [[α∇u · ∇u∗]])ϑ · nΓ .
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Remarks on the Material Derivative
We consider a sufficiently smooth function u = u(t, x) and the space-time dependent
velocity field T (t, x) = x+ tϑ as defined in the first chapter. The material derivative of
u with respect to the velocity T , well known from fluid dynamics is then defined as

u̇(t, x) := d

dt
u(t, T (t, x)) = ∂tu(t, T (t, x)) + d

dt
T (t, x) · ∇u(t, T (t, x))

= ∂tu(t, T (t, x)) + ϑ(x) · ∇u(t, T (t, x)) .

Evaluated at t = 0 we obtain due to T (0, x) = x

u̇(x) := u̇(0, x) = ∂tu(0, x) + ϑ(x) · ∇u(0, x) =: ∂tu+ ϑ · ∇u . (3.35)

In the shape optimization context we investigated only differentiability properties of
ut(x) = ut(T (t, x)) := u(t, T (t, x)) so far. Having (3.35) in mind, it is natural to ask as
well for differentiability properties of ut(x) = u(t, x) and especially for the existence of
the limit

u′ = lim
t↘0

ut − u
t

.

This is the analogue quantity to the partial derivative ∂tu in shape optimization and is
called local shape derivative. Usually the local shape derivative is defined by means of
the material derivative [SZ92, p. 111]

u′ := u̇− ϑ · ∇u .

This definition recovers the usual connection between partial and material derivative.

Similar to the Reynolds transport theorem from fluid dynamics, it is possible to for-
mulate a transport theorem that enables us to directly differentiate perturbed integrals
[DZ11, Theorem 4.2]

d

dt

(∫
Tt(Ω)

Ψ(t)
) ∣∣∣∣

t=0
=
∫

Ω
Ψ′(0) + div(Ψ(0)ϑ) .

The local shape derivative together with the transport theorem allows for an alternative
derivation of boundary/interface expressions of the shape derivative (see [Stu15]). This
derivation includes a proof of

lim
t↘0

ut − u
t

= u̇− ϑ · ∇u in H1(Ω),

which is needed in order to apply the transport theorem.
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3.2 One-phase Poisson Problem
The next model problem is well studied in the literature (cf. [Stu15]), therefore we will
only reference the proofs for the derivation of the shape derivative. The main purpose of
this problem will be a comparison of the volume and boundary expression of the shape
derivative with respect to their approximation quality in a numerical context.

We consider a bounded domain Ω ⊂ Ω0 ⊂ Rd where ∂Ω0 is piecewise smooth. The
state u ∈ H1

0 (Ω) solves the homogeneous Dirichlet problem

−∆u = f in Ω , (3.36)
u = 0 on ∂Ω , (3.37)

with f ∈ H1(Ω0). The shape function is choosen as

J(Ω) =
∫

Ω
(u− uc)2 (3.38)

where uc ∈ C1(Ω0). Similarly to the two-phase problem we define the adjoint state as
the weak solution u∗ ∈ H1

0 (Ω) of the problem

−∆u∗ = 2(u− uc) in Ω , (3.39)
u∗ = 0 on ∂Ω . (3.40)

We will only present the shape derivative for this problem without a detailed derivation.

3.8. LEMMA [shape derivatives for model problem II]
The volume expression of the shape derivative of (3.38) is given by

dJ(Ω)[ϑ] =
∫

Ω
div(ϑ)

(
(u− uc)2 + u∗

)
−
∫

Ω
2 (∇uc · ϑ) (u− uc)

+
∫

Ω

(
(Dϑ+DϑT )∇u

)
· ∇u∗ −

∫
Ω
div(ϑ)∇u · ∇u∗ +

∫
Ω

(∇f · ϑ)u∗ .
(3.41)

If further ∂Ω ∈ C1 and u, u∗ ∈ H1
0 (Ω)∩H2(Ω), the boundary expression of (3.41) is well

defined and given by

dJ(Ω)[ϑ] =
∫
∂Ω
g(ϑ · n) , (3.42)

where n is the outer unit normal of ∂Ω and

g = (u− uc)2 + (∇u · n) (∇u∗ · n) . (3.43)

Proof. A proof of both statements can be found in [Stu15].



32 Chapter 3 Shape Optimization for two Model Problems

Remark: We will take a closer look at the interface expression of the shape derivative
for the two-phase problem (3.24) compared to the boundary expression for the one-phase
problem (3.42). The "control function" ū does not occur in the interface expression
whereas the boundary expression depends on uc. This difference is connected to the fact
that ū ∈ C1(Ω) and thus [[ū]] = 0 on the interface Γ. For the one-phase case we did
not assume uc = 0 on ∂Ω. The second difference, we observe is that the source term f
occurs in the interface expression but in the boundary expression it does not. For the
interface problem we assumed f to be discontinuous over the interface, i.e. [[f ]] 6= 0 on
Γ. For the boundary expression instead, all boundary integrals including the source f
vanish, since f is always multiplied with a function w ∈ H1

0 (Ω) and thus fw = 0 on ∂Ω.



Chapter 4

Level Set Representation of the Geometry

In this chapter we will present how the geometries i.e. the subdomains and the inter-
face/boundary can be represented by a level set function. The first section introduces
the main ideas of level set methods on the analytical level, especially the level set trans-
port equation. In the second section we discuss an appropriate discretization of the level
set function and the transport equation.

4.1 Continuous Level Set Functions
Continuous Geometry Representation
We consider the geometrical setting of the two-phase model problem from Section 3.1.
The subdomains Ω1,Ω2 and the interface Γ are represented by a continuous level set
function φ0 ∈ C(Ω) with the following properties:

x ∈ Γ⇔ φ0(x) = 0,
x ∈ Ω1 ⇔ φ0(x) < 0,
x ∈ Ω2 ⇔ φ0(x) > 0 .

Remark: For the case of a one-phase problem on a domain Ω ⊂ Ω0, we consider the
same strategy as above and replace Ω by Ω0, Ω1 by Ω and Γ by ∂Ω.

The level set function φ0 is called a signed distance function if additionally holds

|φ0(x)|= dist(x,Γ) .

Example: A signed distance function that represents an ellipse is given by

φ0(x, y) =
√

(x− xc)2

xs
+ (y − yc)2

ys
− r

with xc, yc ∈ R and xs, ys, r > 0. We will often use such functions for the domain ini-
tialization in numerical experiments (see Figure 4.1 for a sketch).

33
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Figure 4.1: Signed distance function with an ellipse as zero level (white).

Level Set Transport Equation
In the shape optimization context we want to move the level set function along a descent
direction β for a certain time T . Therefore we need to define the time dependent level
set function φ = φ(t, x). To move φ we need to solve a transport equation which is a first
order hyperbolic equation. For those PDE’s it is only meaningful to enforce boundary
conditions on the inflow boundary

∂Ω− := {x ∈ ∂Ω : β · n∂Ω < 0} .

Given initial data φ0 : Ω → R and boundary data φD : [0, T ] × Ω → R, the level set
transport equation reads as

find φ : [0, T ]× Ω→ R such that

∂tφ+ β · ∇φ = 0 in [0, T ]× Ω, (4.1)
φ(x, 0) = φ0(x) in Ω, (4.2)
φ(x, t) = φD(x, t) on [0, T ]× ∂Ω− . (4.3)

4.2 FE Discretization of the Level Set Function and the Level
Set Transport

Discrete Geometry Representation
As in Section 3.1, we consider a bounded domain Ω ⊂ R2 consisting of two subdomains
Ω1,Ω2 that are separated by the interface Γ = Ω1 ∩Ω2. To define discrete quantities on
Ω we need a mesh that subdivides Ω into simplices. We claim the following assumption
on the mesh to hold for the rest of this thesis unless noted otherwise.
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4.1. Definition/Assumption [mesh properties]
Let {Th} be a family of simplicial triangulations of Ω. For T ∈ Th, hT is defined as the
diameter of the smallest ball that contains T and ρT as the diameter of the largest ball
contained in T . The meshsize h is defined as h = max{hT : T ∈ Th}.

Shape regularity: A family of triangulations is called shape regular if ∃K > 0
such that ρT ≥ hT

K .

Quasi-uniformity: Th is called quasi-uniform if it is shape regular and ∃c > 0
such that ∀ T ∈ Th holds ch ≤ hT .

Assumption: We assume that Th is shape regular in the following.

We will approximate the continuous level set function φ by discrete counterparts defined
on Finite Element spaces corresponding to the triangulation Th. Whereas the geometry
should be represented by a continuous Finite Element function, for the level set transport
it is beneficial to consider discontinuous Finite Element spaces. Therefore we need two
different representatives, namely a continuous and a discontinuous one defined by

φconth ∈ Vh := {vh ∈ H1(Ω) : vh|T ∈ P1(T ), for T ∈ Th} (4.4)
φh,0 ∈Wh := {wh ∈ L2(Ω) : wh|T ∈ P1(T ), for T ∈ Th}. (4.5)

The continuous representative is used to define the discrete interface/domains

Γh := {x ∈ Ω : φconth (x) = 0}
Ω1,h := {x ∈ Ω : φconth (x) < 0}
Ω2,h := {x ∈ Ω : φconth (x) > 0} .

Remark: For a piecewise linear geometry approximation holds dist(Γh,Γ) ∼ h2 for a
sufficiently accurate approximation φh of φ. This will not deteriorate any error estimates
if linear Finite Elements are applied (cf. [LR17, Lemma 3.7]).

To establish accurate definitions we need some more notation. Let T ∈ Th then

Ti := T ∩ Ωi,h, i ∈ {1, 2}, (4.6)
ΓT := T ∩ Γh, (4.7)
T Γ
h := {T : measd−1(T ∩ Γh) > 0}, (set of cut elements), (4.8)

ΩΓ := {x ∈ T : T ∈ T Γ
h }, (domain of cut elements). (4.9)

Interpolation Operators
It is desirable to map between Wh and Vh as well as between C(Ω) and Vh. Therefore
we will define two suitable interpolation operators.
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To map discontinuous Finite Element functions on continuous ones, we employ the Os-
wald interpolation (cf. [LR17], [Osw93]). Let X denote the set of mesh nodes, then we
define for any xi ∈ X the set of elements that contain xi

ω(xi) := {T ∈ Th : xi ∈ T} .

For any wh ∈Wh, xi ∈ X we define the local average as

Axi(wh) := 1
|ω(xi)|

∑
T∈ω(xi)

wh|T (xi) .

The interpolation operator between Wh and Vh is then defined as

Iφ,dch (wh)(xi) := Axi(wh) , (4.10)

which defines an unique element Iφ,dch (wh) ∈ Vh.

The interpolation operator between C(Ω) and Vh is defined by standard nodal inter-
polation (cf. [LR13, Definition 5.2])

Iφ,conth : C(Ω)→ Vh, Iφ,conth (ψ)(xi) = ψ(xi) ∀xi ∈ X . (4.11)

Note that this interpolation problem defines an unique element in Vh, since we consider
linear Finite Elements.

DG Level Set Transport
In order to discretize (4.1)-(4.3) we consider the discontinuous level set function φh,0 ∈
Wh. A popular method to solve transport equations numerically, is the upwind-DG
formulation which we will also use here. To present an accurate definition of this method,
we need some more notation

F ih := {F = ∂T1 ∩ ∂T2 : T1, T2 ∈ Th, T1 6= T2} (set of inner facets) .

For each F ∈ F ih we consider a master element T1, the second element will be denoted
by T2. The unique facet normal nF is then defined as the outer unit normal of ∂T1. For
wh ∈Wh we further define on F ∈ F ih

[[wh]] := wh|T1−wh|T2 (facet jump),

{{wh}} := 1
2 (wh|T1+wh|T2) (facet average) .

Given a discrete descent direction βh ∈ Xh := {ψh ∈
[
H1

0 (Ω)
]d : ψh|T∈ [P1(T )]d , T ∈

Th} the upwind bilinear form is defined by (cf. [DPE11])

cupwh (wh, vh) :=
∫

Ω
(βh · ∇wh) vh +

∮
∂Ω

(βh · n∂Ω)	whvh

−
∑
F∈Fi

h

∮
F

(βh · nF ) [[wh]] {{vh}}

+
∑
F∈Fi

h

∮
F

1
2 |βh · nF |[[wh]] [[vh]] ,

(4.12)
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where x	 = 1
2(|x|−x) is the negative part. Given a discrete boundary condition φh,D

the corresponding linear form is defined as

F ch(vh) :=
∮
∂Ω

(βh · n∂Ω)	 φh,Dvh .

As boundary condition we will choose φh,D = φh,0.

Remark: For a derivation that also motivates the name "upwind-DG" and more de-
tails on the method we refer to [Leh10].

Before we are going to define the semidiscrete and fully discrete version of the level
set transport we will have a closer look at the upwind bilinear form cupwh (·, ·). For
vh ∈Wh and F ∈ F ih we define on F

vdownh :=
{
vh|T1 βh · nF < 0,
vh|T2 βh · nF > 0 ,

so vdownh always "chooses" the value on the downwind side of the facet F (see Figure 4.2).

T1

T2

Figure 4.2: Two neighboring elements with the velocity field βh (blue) and the downwind
facet (red)

We would like to rewrite the two sums over the inner facets in (4.12). Therefore we have
to distinct two cases.
Case 1: βh · nF < 0 and thus vdownh = vh|T1

1
2 |βh · nF |[[wh]] [[vh]]− (βh · nF ) [[wh]] {{vh}} = − (βh · nF ) [[wh]]

(1
2 [[vh]] + {{vh}}

)
= − (βh · nF ) [[wh]]

(1
2(vh|T1−vh|T2)

+ 1
2(vh|T1+vh|T2)

)
= − (βh · nF ) [[wh]] vh|T1

= − (βh · nF ) [[wh]] vdownh .
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Case 2: βh · nF > 0 and thus vdownh = vh|T2 . Here we conclude similarly

1
2 |βh · nF |[[wh]] [[vh]]− (βh · nF ) [[wh]] {{vh}} = − (βh · nF ) [[wh]] vdownh .

This investigation shows that we have an equivalent formulation of the upwind-DG
bilinear form by

cupwh (wh, vh) :=
∫

Ω
(βh · ∇wh) vh +

∮
∂Ω

(βh · n∂Ω)	whvh −
∑
F∈Fi

h

∮
F

(βh · nF ) [[wh]] vdownh .

The semidiscrete variational formulation of (4.1)-(4.3) reads as

find φh : [0, T ]→Wh such that ∀wh ∈Wh∫
Ω
∂tφh(t)wh + cupwh (φh(t), wh) = F ch(wh)

φh(0) = φh,0 .

(4.13)

This is a finite dimensional system of ordinary differential equations which can be fully
discretized by an appropriate explicit or implicit time stepping scheme. We will choose
an implicit Euler scheme. Let N ∈ N denote the number of time steps and ∆t := T

N the
time step size. Starting with the initial condition φ0

h = φh,0 the solution at time instance
tn = n∆t for n ∈ {1, . . . , N} is then approximated by φnh ≈ φh(tn). The approximations
are defined by the following scheme

for n = 1, . . . , N find φnh such that ∀wh ∈Wh∫
Ω

1
∆t

(
φnh − φn−1

h

)
wh + cupwh (φnh, wh) = F ch(wh) .

(4.14)

Let dim(Wh) = L and {ωj : j = 1, . . . , L} ⊂ Wh a basis of Wh. Then we can represent

φnh with respect to this basis φnh =
L∑
j=1

cnj ωj with coefficients cnj ∈ R. We obtain the

following quantities

RL 3 φ̂n =
(
cnj

)L
j=1

RL 3 F̂ = (F ch(ωj))Lj=1

RL×L 3M =
(
(ωj , ωi)L2(Ω)

)L
i,j=1

RL×L 3 Â =
(
cupwh (ωj , ωi)

)L
i,j=1 .

Now we can rewrite (4.14) as the linear system(
M + ∆tÂ

)
φ̂n = M∆φ̂n−1 + ∆tF̂ . (4.15)
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Re-initialization
Usually the discrete level set function is initialized by an approximate signed distance
function. During the level set transport, this property gets lost. In order to regain the
signed distance property, the current level set function φh can be replaced after a few
time steps by an approximate signed distance function φ̃h that has the same zero level
as φh. This process is known as re-initialization in the literature. The fast marching
method (first introduced by Sethian [Set96]) is one possibility to implement such a re-
initialization. The only information that is needed from the "old" level set function φh
is its zero level Γh. Based on geometrical ideas, the values of φ̃h close to the interface
are assigned and then successively extended to the entire domain. For more details and
further references we refer to [LR13, Section 9.3.2] and [GR11, Section 7.4.1].

In this thesis we try to avoid the use of re-initialization techniques. The underlying
idea of this approach is, to transport the level set function by a velocity field βh that
doesn’t deteriorate the signed distance property too much.



Chapter 5

FE Approximation of the One-phase
Problem

In the first part of this chapter we will present an unfitted Finite Element method which
yields solutions of optimal order for the one-phase problem introduced in Chapter 3.2.
In the second part we will illustrate why an approximation of the velocity field based
on the volume expression is superior over an approximation based on the boundary
expression. We will see that the former one yields better approximation properties in a
Finite Element context.

5.1 Fictitious Domain Method
We will present a fictitious domain method to solve the one-phase model problem. As
our mesh is not aligned to the domain boundary, the boundary conditions have to be
imposed in a weak sense. The presented idea goes back to Nitsche [Nit71], therefore the
method is also called Nitsche fictitious domain method. Since our presentation is based
on [BH12], we will only point out the main ideas and refer to this paper for more details.

Let Ω ⊂ Rd a bounded domain, then we recall the problem (3.36)

−∆u = f in Ω,
u = 0 on ∂Ω .

Mesh: For simplicity we assume here that Th is a quasi-uniform family of triangula-
tions of the holdall domain Ω0 ⊃ Ω. Please note that the domain boundary ∂Ω is not
necessarily aligned to the element boundaries.

Let F be an facet of Th i.e. F = T1∩T2 with T1, T2 ∈ Th, T1 6= T2 and measd−1(F ) > 0.
For each facet we fix a master element T1 and define the facet normal nF as the outer
unit normal of T1. Further we define the set of facets close to the boundary

F∂Ω := {F = T1 ∩ T2 : F ∩ Ω 6= ∅, T1, T2 ∈ Th, T1 ∩ ∂Ω 6= ∅ or T2 ∩ ∂Ω 6= ∅}

and the active mesh/domain

T Ω
h = {T ∈ Th : T ∩ Ω 6= ∅}, ΩT = {x ∈ T : T ∈ T Ω

h } .

40
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Ω

Ω0

Figure 5.1: Background mesh with active mesh T Ω
h (green) and interface Γ (red)

The geometrical setting is sketched in Figure 5.1. We consider a standard Finite Element
space on the active domain

Vh(ΩT ) = {vh ∈ H1(ΩT ) : vh|T∈ P1(T ), T ∈ T Ω
h } .

For vh ∈ Vh(ΩT ) the flux jump over a facet F = T1 ∩ T2 is defined by

[[∇vh · nF ]] := (∇vh|T1−∇vh|T2) · nF .

Let n denote the outer unit normal of Ω and λ ∈ R, then the Nitsche fictitious domain
bilinear form aficth (·, ·) : Vh(ΩT )× Vh(ΩT )→ R reads as

aficth (uh, vh) :=
∫

Ω
∇uh · ∇vh −

∮
∂Ω
∇uh · nvh −

∮
∂Ω
∇vh · nuh +

∮
∂Ω

λ

h
uhvh .

Remark: For the sake of convenience, we assume that all integrals can be evaluated
exactely.

To ensure stability in the case of small cuts (|T ∩ Ω|� |T |), an additional stabiliza-
tion term is needed, the so called ghost penalty. For a facet F = T1 ∩ T2 we define
hF = max{diam(T1), diam(T2)}. Let µ ∈ R, then the ghost penalty bilinear form is
defined by

j(uh, vh) :=
∑

F∈F∂Ω

µhF

∮
F

[[∇uh · nF ]] [[∇vh · nF ]] .

This is all we need to formulate the fictitious domain variational problem for (3.36):

find uh ∈ Vh(ΩT ) such that ∀vh ∈ Vh(ΩT )

Bh(uh, vh) := aficth (uh, vh) + j(uh, vh) =
∫

Ω
fvh .

(5.1)
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The properties of the solution to (5.1) are stated in the next lemma. The error bounds
are given in the discrete energy norm defined by

|‖v‖|2h:=
∑
T∈T Ω

h

∫
T
|∇v|2+h

∮
∂Ω

(∇v · n)2 + λh−1
∮
∂Ω
v2 + j(v, v) .

Remark: The discrete energy norm is defined on the active domain ΩT that covers
Ω. For a function u ∈ H2(Ω) there exists a proper extension E(u) ∈ H2(ΩT ) with
‖E(u)‖H2(ΩT )≤ C‖u‖H2(Ω) (cf. [Ste70, Theorem 5, p.181]).

5.1. LEMMA [error bounds for uh (one-phase)]
Let u ∈ H2(Ω) be the solution to (3.36). The variational problem (5.1) admits a unique
solution uh for λ, µ sufficiently large, that fulfills

(i) |‖E(u)− uh‖|h≤ Ch‖u‖H2(Ω)

(ii) ‖u− uh‖L2(Ω)≤ Ch2‖u‖H2(Ω) .

Proof. See [BH12].

Similarly we can define the fictitious domain problem for the adjoint state (3.39) by

find u∗h ∈ Vh(ΩT ) such that ∀vh ∈ Vh(ΩT )

Bh(u∗h, vh) =
∫

Ω
2(uh − uc)vh =: F ∗h (vh) .

(5.2)

The same statement on the error bounds holds for the adjoint problem.

5.2. LEMMA [error bounds for u∗h (one-phase)]
Let u∗ ∈ H2(Ω) be the solution to (3.36). The variational problem (5.2) admits a unique
solution u∗h for λ, µ sufficiently large, that fulfills

(i) |‖E(u∗)− u∗h‖|h≤ Ch‖u∗‖H2(Ω)

(ii) ‖u∗ − u∗h‖L2(Ω)≤ Ch2‖u∗‖H2(Ω) .

Proof. The proof does not follow directly because the right hand side of the continuous
and discrete adjoint problem differ. Therefore we define two auxiliary problems. The
continuous problem with the perturbed source term

find w∗ ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω)

a(w∗, v) :=
∫

Ω
∇w∗ · ∇v =

∫
Ω

2(uh − uc)v .

And the discrete problem with the exact source term

find w∗h ∈ Vh(ΩT ) such that ∀vh ∈ Vh(ΩT )

Bh(w∗h, vh) =
∫

Ω
2(u− uc)vh .
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By the Poincaré inequality and Cauchy-Schwarz inequality we obtain

‖w∗ − u∗‖2H1(Ω) ≤ Ca(w∗ − u∗, w∗ − u∗)

= C

(∫
Ω

2(uh − uc)(w∗ − u∗)−
∫

Ω
2(u− uc)(w∗ − u∗)

)
= 2C

∫
Ω

(u− uh)(w∗ − u∗)

≤ C‖w∗ − u∗‖H1(Ω)‖u− uh‖L2(Ω) .

Dividing by ‖w∗ − u∗‖H1(Ω) and application of Lemma 5.1 (ii) yields

‖w∗ − u∗‖H1(Ω)= O(h2) .

An L2 bound for (w∗h − u∗h) can be found by the triangle inequality

‖w∗h − u∗h‖L2(Ω)≤ ‖w∗h − u∗‖L2(Ω)+‖u∗ − w∗‖L2(Ω)+‖w∗ − u∗h‖L2(Ω)= O(h2) .

The order of the second summand was shown above and the order for the first and third
summand we can apply the standard error estimate as in Lemmma 5.1 because w∗h, u∗
resp. u∗h, w∗ posess the same source term. Now we can apply the triangle ineqality and
conclude by using the error bounds above and discrete coercivity of Bh(·, ·) ([BH12,
Lemma 6])

|‖E(u∗)− u∗h‖|2h ≤ |‖E(u∗)− w∗h‖|2h+|‖w∗h − u∗h‖|2h
≤ C

(
h2 +Bh(w∗h − u∗h, w∗h − u∗h)

)
= C

(
h2 +

∫
Ω

2(u− uh)(w∗h − u∗h)
)

≤ C
(
h2 + ‖uh − u‖L2(Ω)‖w∗h − u∗h‖L2(Ω)

)
= O(h2) +O(h4) .

Taking the square root yields the first claim. The second one is obtained directly by the
triangle inequality

‖u∗ − u∗h‖L2(Ω) ≤ ‖u∗ − w∗‖L2(Ω)+‖w∗ − u∗h‖L2(Ω)

≤ ‖u∗ − w∗‖H1(Ω)+‖w∗ − u∗h‖L2(Ω)= O(h2) .

Where the order of the first summand was shown above and the order of the second one
follows again by the standard estimate in Lemma 5.1.

5.2 Approximation of the Descent Direction
Continuous Descent Directions
To highlight the aspect of the choice of the descent direction, we consider the one-phase
model problem from Section 3.2. Let the assumptions of Lemma 3.8 be valid and u, u∗
be the solutions of problem (3.36) and (3.39). According to Lemma 3.8 we have two
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expressions of the shape derivative that are equivalent on the analytical level. The
volume expression

dV OL[ϑ] :=
∫

Ω
div(ϑ)

(
(u− uc)2 + u∗

)
−
∫

Ω
2 (∇uc · ϑ) (u− uc)

+
∫

Ω

(
(Dϑ+DϑT )∇u

)
· ∇u∗ −

∫
Ω
div(ϑ)∇u · ∇u∗ +

∫
Ω

(∇f · ϑ)u∗
(5.3)

and the boundary expression

dBND[ϑ] :=
∫
∂Ω
g(ϑ · n), with g = (u− uc)2 + (∇u · n) (∇u∗ · n) . (5.4)

Remark: Since we claimed the assumptions of Lemma 3.8 to hold, we have that g ∈
L2(∂Ω). The Cauchy Schwarz inequality and the trace theorem imply further for ϑ ∈
X =

[
H1

0 (Ω0)
]d

dBND[ϑ] =
∫
∂Ω
g(ϑ · n) ≤ ‖g‖L2(∂Ω)‖ϑ‖L2(∂Ω)≤ C‖g‖L2(∂Ω)‖ϑ‖X .

Thus dBND[·] is a linear and continuous functional on X. Because both expressions are
equal (on the analytical level), the same statement holds for dV OL[·]. Hence we obtain
that the extension assumption (B) from the first chapter is valid. Under weaker assump-
tions dBND[·] may not be well defined at all and dV OL[·] is only a linear and continuous
functional on W 1,∞(Ω).

To reduce the value of the shape function J(Ω) =
∫

Ω(u−uc)2, we want to find a descent
direction β ∈ X. Let b(·, ·) be the inner product on X and β′ the Riesz representative
of −dV OL[·] i.e.

b(β′, ψ) = −dV OL[ψ], ∀ψ ∈ X .

Lemma 2.10 indicates that we have considerable freedom in the choice of β. We will
investigate two possibilities namely

• βV OL = β′

• βBND with βBND · n = −g on ∂Ω ,

where n is the outer unit normal of ∂Ω.

Remark: For our purpose it is not enough to have a descent direction that is only
defined on ∂Ω (such as g), since the level set transport equation requires a velocity field
that is defined in the entire holdall domain Ω0. Therefore such descent directions re-
quire a Finite Element extension on Ω0 before they can be used for the level set transport.
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Discrete Descent Directions
To conclude this section we will now present an explanation why a volume based ap-
proximation of the descent direction should be preferred over a boundary based approxi-
mation. The main proposition of this section, which supports this statement, makes
assumptions on error bounds of several discrete quantities. We want to emphasize
that these assumptions need not necessarily to hold but are realistic very often (cf.
[BEH+17]).

We consider a shape regular family of simplicial triangulations {Th} of Ω0. The dis-
crete counterparts for βV OL and βBND belong to the Finite Element space

Xh = {ψh ∈
[
H1

0 (Ω0)
]d

: τh|T∈ [P1(T )]d , T ∈ Th} .

According to Corollary 2.6 for ϑ ∈ X, only the values of the normal component on
∂Ω influence the value of the shape derivative. So let β ∈ X be a descent direction
and βh ∈ Xh the corresponding discrete approximation, then we are interested in error
bounds of the form

‖(β − βh) · n‖L2(∂Ω)≤ Chq for q > 0 .

The following result is a useful tool to bound Lp norms on the boundary for p ≥ 1 and
will be used later to bound the L2 norm on the boundary.

5.3. LEMMA [trace inequality]
Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary. Then for 1 ≤ p ≤ ∞,
∃C > 0 such that

‖v‖Lp(∂Ω)≤ C‖v‖
1−1/p
Lp(Ω)‖v‖

1/p
W 1,p(Ω) , ∀v ∈W 1,p(Ω) .

Proof. See [BS07, Theorem 1.6.6].

Let uh, u∗h ∈ Vh the solutions to (5.1), (5.2). The discrete version of the shape derivative
(volume expression) is then defined by

dV OLh [ϑ] :=
∫

Ω
div(ϑ)

(
(uh − uc)2 + u∗h

)
−
∫

Ω
2 (∇uc · ϑ) (uh − uc)

+
∫

Ω

(
(Dϑ+DϑT )∇uh

)
· ∇u∗h −

∫
Ω
div(ϑ)∇uh · ∇u∗h +

∫
Ω

(∇f · ϑ)u∗h .

(5.5)

The discrete Riesz representative is then defined as the unique β′h ∈ Xh such that

b(β′h, ψh) = −dV OLh [ψh], ∀ψh ∈ Xh . (5.6)

According to Lemma 2.11 β′ ∈
[
H1

0 (Ω0)
]d ∩ [H2(Ω0 \ Ω)

]d ∩ [H2(Ω)
]d. We assumed fur-

ther that u, u∗ ∈ H2(Ω). That motivates the following assumption on the corresponding
error bounds.
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5.4. Assumption [optimal error bounds]

‖β′ − β′h‖X= O(h1/2), (5.7)
‖β′ − β′h‖[L2(Ω0)]d= O(h), (5.8)

‖∇(u− uh) · n‖L2(∂Ω)= O(h1/2), (5.9)

‖∇(u∗ − u∗h) · n‖L2(∂Ω)= O(h1/2) . (5.10)

Remark: In order to proof the first two assumptions, one has to investigate the consis-
tency error

sup
ψh∈Xh

|dV OLh [ψh]− dV OL[ψh]|
‖ψh‖X

.

If the error bounds from Lemma 5.1 hold, the bounds (5.9)-(5.10) are relatively easy
obtained by the use of the trace inequalities and interpolation errors on the boundary.
Finally we want to emphasized, that these bounds are realistic and have been proven for
a similar problem in [BEH+17].

For the discrete counterparts of βBND and βV OL we have

βBNDh · n = (uh − uc)2 + (∇uh · n) (∇u∗h · n) =: gh on ∂Ω (5.11)
βV OLh = β′h in Ω . (5.12)

It is intuitive that the dominating error in eh(g) := ‖g − gh‖L2(∂Ω) will be

‖(∇u · n)(∇u∗ · n)− (∇uh · n)(∇u∗h · n)‖L2(∂Ω) , (5.13)

since in Finite Element methods the gradient of a function is less accurately approx-
imated than the function itself. The following assumption is much stronger than As-
sumption 5.4 and claims that eh(g) can be controlled by the L2-error of the normal
derivatives on the boundary.

5.5. ASSUMPTION [error bound for the boundary representative]

‖g − gh‖L2(∂Ω)≤ C
(
‖∇(u− uh) · n‖Ł2(∂Ω)+‖∇(u∗ − u∗h) · n‖Ł2(∂Ω)

)
(5.14)

Now we can state the main result of this section.

5.6. PROPOSITION [error bounds for discrete descent directions]
Consider the discrete descent directions βBNDh , βV OLh as in (5.11), (5.12). If Assumptions
5.4 and 5.5 hold, then

‖
(
βBND − βBNDh

)
· n‖L2(∂Ω)= O(h1/2),

‖
(
βV OL − βV OLh

)
· n‖L2(∂Ω)= O(h3/4) .
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Proof. For the first statement we obtain by Assumption 5.5 and Assumption 5.4 (5.9)/(5.10)

‖
(
βBND − βBNDh

)
· n‖2L2(∂Ω) ≤ ‖g − gh‖L2(∂Ω)

≤ C
(
‖∇(u− uh) · n‖L2(∂Ω)+‖∇(u∗ − u∗h) · n‖L2(∂Ω)

)
= O(h1/2) ,

which yields the first claim. For the second statement on βV OLh we obtain, using the
trace inequality Lemma 5.3 and Young’s inequality for r ∈ R arbitrary

‖
(
βV OL − βV OLh

)
· n‖L2(∂Ω) = ‖

(
β′ − β′h

)
· n‖L2(∂Ω)≤ ‖β′ − β′h‖[L2(∂Ω)]d

5.3
≤ C

(
‖β′ − β′h‖

1/2
[L2(Ω)]d‖β

′ − β′h‖
1/2
X

)
≤ C

(
h−r‖β′ − β′h‖[L2(Ω)]d+hr‖β′ − β′h‖X

)
≤ C

(
h1−r + h

1/2+r
)
,

where we used (5.7)/(5.8) in the last step. The choice r = 1/4 yields the error bound
O(h3/4).

The above reasoning should motivate, why we will prefer the descent direction βV OLh

stemming from the volume expression of the shape derivative. Although we privileged
the boundary expression by the strong assumption on the error bound (Assumption 5.5),
the volume expression yielded a more accurate descent direction. Numerical examples
in accordance to the conjectured error bounds will be shown in Chapter 7.

Related Work
Another aspect that can be considered in this context is to compare the functionals
dV OLh [·] and dBNDh [·], where

dBNDh [ϑ] :=
∫

Ω
gh(ϑ · n) .

On the analytical level dV OL[·] and dBND[·] are equivalent, which does not hold for
their discrete approximations. In [HPS15] it is investigated, how the corresponding
approximation erros

sup
‖β‖X=1

∣∣∣∣dV OLh [β]− d[β]
∣∣∣∣ (5.15)

sup
‖β‖X=1

∣∣∣∣dBNDh [β]− d[β]
∣∣∣∣ (5.16)

behave. To estimate (5.15) and (5.16), X is replaced by a finite dimensional subspace
Y ⊂ C1(Ω). For smooth domains, one can observe an experimental order of O(h2) for
the error of the volume functional and only O(h) for the error of the boundary functional.
For more details, the reader is referred to [HPS15].



Chapter 6

FE Approximation of the Optimal Interface
Problem

This chapter introduces all numerical methods which are needed to discretize the shape
optimization problem introduced in Section 3.1. In the first section we will present the
appropriate Finite Element spaces for unfitted interface problems. The second section of
this chapter presents the discrete formulation of all sub problems of the full optimization
procedure. The chapter is concluded by an optimization algorithm for problem (3.1) that
also summarizes the former substeps.

6.1 The unfitted Finite Element Method (XFEM and CutFEM)
Since we work with a level set geometry representation (that moves in every optimiza-
tion step) and a fixed mesh Th, the mesh elements are not aligned to the interface Γ.
This leads to the fact, that we lose approximation accuracy. To maintain an optimal
approximation order, the standard Finite Element spaces need to be modified.

Approximation Orders
We consider functions that are domain-wise smooth but can have a strong or weak
discontinuity over the interface i.e. u ∈ H l(Ω1)∩H l(Ω2) or u ∈ H l(Ω1)∩H l(Ω2)∩H1(Ω)
for l ≥ 1. We consider the standard Finite Element spaces

V c
h := {v ∈ H1(Ω) : v|T∈ P1(T ), T ∈ Th}, V dc

h := {v ∈ L2(Ω) : v|T∈ P1(T ), T ∈ Th} .

For the selected spaces, the following approximation result holds

6.1. LEMMA [approximation order of standard FE spaces]
There exist shape regular families of triangulations {Th}, interfaces Γ ∈ C1 and w ∈
H l(Ω1) ∩H l(Ω2), u ∈ H l(Ω1) ∩H l(Ω2) ∩H1(Ω) with l ≥ 2 such that

(i) inf
vh∈Vh

‖w − vh‖L2(Ω)≥ Ch
1/2 , Vh ∈ {V c

h , V
dc
h } .

(ii) inf
vh∈Vh

‖u− vh‖L2(Ω)≥ Ch
3/2 , Vh ∈ {V c

h , V
dc
h } .

Proof. For (i) see [GR11, Section 7.9.1], for (ii) see Appendix (Proposition A.3).

48
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Remark: The approximation orders in the last lemma do not improve, if the polynomial
degreee is increased to k > 1.

This lack of accuracy needs to be fixed, thus we will introduce FE-spaces that recover
the domain-wise optimal approximation order globally. To do so wee need more de-
grees of freedom in the region of the interface Γ. We define the restriction operator Ri
L2(Ω)→ L2(Ω) by

Riv =
{
v|Ωi in Ωi

0 in Ω \ Ωi .

Now we can apply the restriction operator on the standard Finite Element space
Vh = {vh ∈ H1(Ω) : vh|T ∈ P1(T ), T ∈ Th}, which defines the unfitted Finite Element
space

V Γ
h := R1Vh ⊕R2Vh .

The above definition describes V Γ
h as the direct sum of two restriced/cut Finite Element

spaces. Therefore, using this this description is referred to as CutFEM.

For V Γ
h we obtain now an optimal approximation order again.

6.2. LEMMA [approximation order of V Γ
h ]

Let u ∈ H2(Ω1) ∩H2(Ω2), then

inf
vh∈V Γ

h

‖u− vh‖L2(Ω)≤ Ch2
(
‖u‖H2(Ω1)+‖u‖H2(Ω2)

)
.

Proof. A proof can be found in [GR11, Theorem 7.9.3, p.254] .

Remark: The approximation result of the last lemma remains valid for higher polyno-
mial degrees k > 1 and yields an error bound hk+1 for u ∈ Hk+1(Ω1)∩Hk+1(Ω2). Since
we only consider low order Finite Elements, the error bound for k = 1 will be sufficient
in this thesis.

XFEM Characterization
The abstract space V Γ

h can be characterized by an enrichment of the standard FE space
Vh. This approach is referred to as XFEM. We follow [GR11, Section 7.9.2] to construct
such enrichment basis functions.

Let n = dim(Vh), J = {1, . . . , n} and {ϕj : j ∈ J } a nodal basis of Vh i.e. for
the i-th node xi holds ϕj(xi) = δij . We define the index set of nodes belonging to a
basis function close to the interface

JΓ = {j ∈ J : Γ ∩ supp(ϕj) 6= ∅} .
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For a basis function ϕi with i ∈ JΓ and the corresponding node xi we define

Ω(xi) =
{

Ω1 if xi ∈ Ω1

Ω2 if xi ∈ Ω2 .

For every i ∈ JΓ we add an enrichment function ϕΓ
i defined as

ϕΓ
i (x) =

{
0 if x ∈ Ω(xi)
ϕi(x) if x /∈ Ω(xi) .

Γ
ϕi(x) ϕj(x)

ϕΓ
i (x)

ϕΓ
j (x)

xi xj

xi xj

xi xj

Figure 6.1: Two standard basis functions in 1D (upper) and the two corresponding en-
richment functions (middle and lower).

The unfitted Finite Element space can now be represented as the direct sum of the
standard and enrichment space i.e. V Γ

h = Vh ⊕ span{ϕΓ
j : j ∈ JΓ} =: Vh ⊕ V x

h . By
construction we have two useful properties of ϕΓ

j ∈ V x
h :

• supp(ϕΓ
j ) ⊂ ΩΓ, ∀j ∈ JΓ (nonzero only on cut elements)

• ϕΓ
j (xi) = 0, ∀j ∈ JΓ, i ∈ J (enrichment function vanishes at all nodes) .
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6.2 Shape Optimization Procedure for an Interface Problem
In this section we will derive an optimization algorithm for the two-phase problem from
Section 3.1. Therefore we will give detailed descriptions of all discrete sub problems
which need to be solved in each optimization step. This includes a an unfitted Nitsche
formulation for the state and adjoint state equation and the construction of a descent
direction for the level set transport equation.

6.2.1 An unfitted Nitsche Method for the State and Adjoint State
We recall problem (3.2)-(3.5) from the last chapter. With a bounded domain Ω ⊂ R2

that can be decomposed into two subdomains Ω1 and Ω2, separated by the interface
Γ := Ω1 ∩ Ω2. Further it is assumed that Ω1 is fully surrounded by Ω2.

−div(α∇u) = f in Ω (6.1)
[[u]] = 0 on Γ (6.2)

[[−α∇u · nΓ]] = 0 on Γ (6.3)
∇u · n+ γu = 0 on ∂Ω (6.4)

The weak formulation of this problem reads as

find u ∈ H1(Ω) such that ∀v ∈ H1(Ω)
2∑
i=1

αi

∫
Ωi
∇u · ∇v +

∮
∂Ω
γuv =

∫
Ω
fv .

(6.5)

To approximate u by a Finite Element solution we choose the unfitted Finite Element
space introduced in the first section of this chapter

V Γ
h = Vh|Ω1⊕Vh|Ω2 .

Remark: Note that we consider the unfitted Finite Element space with respect to the
subdomains Ωi. In fact, the Finite Element spaces are defined with respect to the discrete
subdomains Ωi,h but we assume for simplicity that the geometry can be approximated
exactely. A deeper investigation shows that the geometry error does not deteriorate the
subsequent error bounds (cf. [LR17]).

Since V Γ
h * C0(Ω), a discrete function vh ∈ V Γ

h is in general not single valued on
the interface Γ. Let nΓ be the unit normal of Γ pointing outwards Ω1, s ∈ R and x ∈ Γ,
then for any function w we define the two corresponding values of w by

w−(x) := lim
s↘0

w(x− snΓ) , w+(x) := lim
s↘0

w(x+ snΓ) .

Let κ1, κ2 ≥ 0 with κ1 + κ2 = 1, then we define the jump and average operator (well
known from discontinuous Galerkin methods) on the interface by

[[w(x)]] = w−(x)− w+(x) , x ∈ Γ
{{w(x)}} = κ1w

−(x) + κ2w
+(x), x ∈ Γ .
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We define the discrete bilinear form ah : V Γ
h × V Γ

h → R by

ah(uh, vh) :=
2∑
i=1

αi

∫
Ωi
∇uh · ∇vh +

∮
∂Ω
γuhvh

−
∮

Γ
[[uh]] {{α∇vh · nΓ}} −

∮
Γ

[[vh]] {{α∇uh · nΓ}}+
∮

Γ
λ [[uh]] [[vh]] ,

where λ ≥ 0. The method corresponding to the bilinear form ah(·, ·) is often called
Nitsche method in the literature. The corresponding linear form Fh : V Γ

h → R is
defined by

F (vh) :=
∫

Ω
fvh .

Thus the discrete variational problem reads:

find uh ∈ V Γ
h such that ∀vh ∈ V Γ

h

ah(uh, vh) = F (vh) .
(6.6)

For the error analysis of this discrete variational problem we will refer to the results in
[LR17], where optimal error bounds are proven for a scalar interface problem with homo-
geneous Dirichlet boundary conditions. The paper is focussed on higher order methods
but the analysis includes k = 1 as a special case. The only difference in the variational
formulation is that we consider a Robin problem. However, since the outer boundary
∂Ω is fitted to the mesh, the generalization to this case is straightforward.

The coefficient of the average operator will be element wise defined by

κi = |Ti|
|T |

, where |T |= measd(T ) ,

this particular choice has been first introduced by Hansbo and Hansbo (cf. [HH02]). To
analyze the bilinear form ah(·, ·), further norms are needed. The mesh dependent norms
on the interface

‖v‖21/2,h,Γ:=
∑
T∈T Γ

h

(α1 + α2)
2hT

∫
ΓT
v2, ‖v‖2−1/2,h,Γ:=

∑
T∈T Γ

h

2hT
(α1 + α2)

∫
ΓT
v2

and the full norm

‖v‖2h:=
2∑
i=1

∫
Ωi,h
∇v · ∇v +

∮
∂ΩR

v2 + ‖{{α∇v · nΓh}}‖
2
−1/2,h,Γ+‖[[v]] ‖21/2,h,Γ .

We quote the following two results.



6.2 Shape Optimization Procedure for an Interface Problem 53

6.3. LEMMA [properties of ah(·, ·)]
Let Vreg := H1(Ω) ∩ H2(Ω1) ∩ H2(Ω2), then for λ sufficiently large the bilinear form
ah(·, ·) has the following properties:

(i) Continuity

ah(u, v) ≤ ‖u‖h‖v‖h ∀u, v ∈ Vreg + V Γ
h .

(ii) Discrete coercivity

ah(vh, vh) ≥ ‖vh‖2h ∀vh ∈ V Γ
h .

Proof. The proof is analogue to [Lemma 5.2][LR17].

6.4. LEMMA [interpolation error]
There exists an interpolation operator IΓ

h : H1(Ω)→ V Γ
h such that

‖v − IΓ
h ‖h≤ Ch

(
‖v‖H2(Ω1)+‖v‖H2(Ω2)

)
∀v ∈ Vreg.

Proof. The proof is analogue to [Lemma 5.7][LR17].

Those results yield the existence of a unique solution uh of (6.6). The discrete solution
fulfills the following optimal error bounds.

6.5. LEMMA [error bounds for uh (two-phase)]
Let u be the solution of (6.5), then

(i) ‖u− uh‖h≤ Ch
(
‖u‖H2(Ω1)+‖u‖H2(Ω2)

)

(ii) ‖u− uh‖L2(Ω)≤ Ch2
(
‖u‖H2(Ω1)+‖u‖H2(Ω2)

)
Proof. The proof of the first statement is analogue to [Theorem 5.8][LR17]. A proof
analogue to the second statement can be found in [Theorem 6.5][LR18].

Similar to the discretized state equation (6.6) we discretize the adjoint equation (3.22).
Therefore we define the discrete linear form

F ∗h (vh) :=
∫

Ω
2(uh − ū)vh .

Thus the discrete adjoint problem reads

find u∗h ∈ V Γ
h such that ∀vh ∈ V Γ

h

ah(u∗h, vh) = F ∗h (vh) .
(6.7)

Similarly to the state problem, the discrete adjoint problem has a unique solution u∗h ∈
V Γ
h that fulfills the same error bounds than uh. To proof this statement, wee need an

additional lemma.
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6.6. LEMMA [consistency of the adjoint problem]
Let u, u∗ be the solutions of (6.5)and (3.22) with u∗ ∈ H2(Ω1) ∩H2(Ω2), then

ah(u∗, vh) =
∫

Ω
2(u− ū)vh , ∀vh ∈ V Γ

h .

Proof. Since u∗ is the exact solution of the adjoint problem [[u∗]] = 0 on Γ and thus

ah(u∗, vh) =
2∑
i=1

αi

∫
Ωi
∇u∗ · ∇vh +

∮
∂Ω
γu∗vh −

∮
Γ

[[vh]] {{α∇u∗ · nΓ}} . (6.8)

To treat the interface integral we note that for the exact solution u∗ holds {{α∇u∗ ·nΓ}} =
α1∇u∗ · nΓ = α2∇u∗ · nΓ on Γ and α2∇u∗ · n = γu∗ on ∂Ω. Further on the subdomains
Ωi holds −αi∆u∗ = 2(u− ū). Integration by parts (Green’s formula) yields∮

Γ
[[vh]] {{α∇u∗ · nΓ}} =

∮
∂Ω1

v−h α1∇u∗ · nΓ +
∮
∂Ω2

v+
h α2∇u∗ · n∂Ω2 +

∮
∂Ω
vhα2∇u∗ · n

=
2∑
i=1

αi

∫
Ωi
∇u∗ · ∇vh +

2∑
i=1

∫
Ωi

(αi∆u∗)vh +
∮
∂Ω
γu∗vh

=
2∑
i=1

αi

∫
Ωi
∇u∗ · ∇vh +

∮
∂Ω
γu∗vh −

∫
Ω

2(u− ū)vh .

Inserting this identity into (6.8) yields the claim.

Finally we can state a lemma that ensures also optimal error bounds for u∗h.

6.7. LEMMA [error bounds for u∗h (two-phase)]
Let u∗ be the solution of (3.22), then

(i) ‖u∗ − u∗h‖h≤ Ch
(
‖u∗‖H2(Ω1)+‖u∗‖H2(Ω2)

)

(ii) ‖u∗ − u∗h‖L2(Ω)≤ Ch2
(
‖u∗‖H2(Ω1)+‖u∗‖H2(Ω2)

)
Proof. Similarly as in Lemma 5.2, we have to take into account the perturbation on the
right hand side. Let F ∗(·) denote the source term corresponding to the exact solution
i.e.

F ∗(v) =
∫

Ω
2(u− ū)v .

Due to the triangle inequality it is sufficient to consider the approximation error, since

‖u∗ − u∗h‖h≤ ‖u∗ − IΓ
h (u∗)‖h+‖IΓ

h (u∗)− u∗h‖h
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and the interpolation error can be estimated by Lemma 6.4. For the approximation error
we obtain using coercivity (Lemma 6.3) and consistency (Lemma 6.6)

‖IΓ
h (u∗)− u∗h‖2h = ah(IΓ

h (u∗)− u∗h, IΓ
h (u∗)− u∗h)

= ah(IΓ
h (u∗)− u∗, IΓ

h (u∗)− u∗h) + ah(u∗ − u∗h, IΓ
h (u∗)− u∗h)

= ah(IΓ
h (u∗)− u∗, IΓ

h (u∗)− u∗h) + F ∗(IΓ
h (u∗)− u∗h)− F ∗h (IΓ

h (u∗)− u∗h)

≤ C‖IΓ
h (u∗)− u∗h‖h

(
‖IΓ
h (u∗)− u∗‖h+‖u− uh‖L2(Ω)

)
.

Dividing by ‖IΓ
h (u∗)− u∗h‖h and application of Lemma 6.4, Lemma 6.5 on the quantities

on the right hand side yields the first claim.

The second statement can be now obtained by a standard duality argument which will
be skipped here.

6.2.2 Construction of a Descent Direction
So far we did not specify, which discrete velocity field βh should be used in the level set
transport equation. We will motivate our particular choice of βh by a variational prob-
lem on the domain of cut elements which allows also for an analysis of the approximation
error. The final variational problem will follow the same idea but will be formulated on
whole Ω. This has the purpose to simplify the algorithm and it should be emphasized
that a globally defined descent direction, for which the error analysis also applies, can
be easily constructed.

In Section 5.2 we already indicated that for the one-phase problem, the volume expres-
sion of the shape derivative yields better approximation properties than the boundary
expression. Therefore we will also for the two-phase problem prefer a descent direction
that is based on the volume expression of the shape derivative. The discrete volume
expression is given by

dh[ϑ] :=
∫

Ω
div(ϑ)

(
(uh − ū)2 + fu∗h

)
−
∫

Ω
2(∇ū · ϑ)(uh − ū)

−
2∑
i=1

αi

∫
Ωi
div(ϑ)∇uh · ∇u∗h +

2∑
i=1

αi

∫
Ωi

(
(Dϑ+DϑT )∇uh

)
· ∇u∗h ,

(6.9)

where uh, u∗h are the solutions of (6.6) and (6.7). Let β′h be the discrete Riesz represen-
tative of −dh[·] i.e the unique β′h ∈ Xh with

b(β′h, ψh) = −dh[ψh], ∀ψh ∈ Xh, (6.10)

with the inner product b(β, ψ) =
∫

Ω β · ψ +
∫

Ω∇β : ∇ψ. According to Lemma 2.10 we
won’t violate the descent property if we change the values of β′h in Ω\Γ. Therefore we will
design a velocity field that that approximates β′h on Γ and is extended to Ω\Γ in such a
way that the signed distance property around the interface is (approximately) preserved.
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Ω

Ω0

Figure 6.2: Background mesh with domain of cut elements ΩΓ (green) and interface Γ
(red)

Extension Close to the Interface
Assume we have a discrete level set function φh,0 ∈ Wh that fulfills the approximate
signed distance property on the domain of cut elements ΩΓ (4.9), i.e. |φh,0(x)|≈ dist(x,Γ).
In order to preserve the signed distance property approximately during the level set
transport (4.14), the velocity field βh should only have small alterations in the normal
direction of the interface Γ because this would preserve the distance between two level
sets. In [ZCMO96] the authors show that a signed distance function φ remains a signed
distance function during the level set transport if

β · ∇φ = 0 .

Since βh is assumed to be not time dependent, the best we can do is to claim this
approximate property for the inital geometry represented by φconth . Before we are going
to define an extension on the whole domain Ω, we construct an extension on the domain
of cut elements ΩΓ (see Figure 6.2). A standard Finite Element space on this domain is
defined by

Vh(ΩΓ) := {vh ∈ H1(ΩΓ) : vh|T∈ P1(T ), T ∈ T Γ
h } .

The outer unit normal of the interface is given by the normalized gradient of the contin-
uous level set function nφh(x) := ‖∇φconth (x)‖−1

2 ∇φconth (x). The corresponding extension
problem is defined by

find βΓ
h,j ∈ Vh(ΩΓ), j ∈ {1, 2} such that ∀vh ∈ Vh∫

ΩΓ

(
∇βΓ

h,j · n
φ
h

) (
∇vh · nφh

)
+ h−1

∮
Γ
βΓ
h,jvh = h−1

∮
Γ
β′h,jvh .

(6.11)

Remark: The volume integral in (6.11) corresponds to an anisotropic diffusion opera-
tor in direction of nφh. By the boundary integrals, we want to approximate the descent
direction β′j on the interface Γ.
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We define the tubular neighborhood of the interface by

Uδ(Γ) := {x ∈ Ω : dist(x,Γ) ≤ δ}, δ ∈ R .

In order to show an approximation result on the interface, we need the following auxiliary
lemma.
6.8. LEMMA [estimate on Uδ]
Let w ∈ H1(Ω1) ∩H1(Ω2), then

‖w‖L2(Uδ)≤ Cδ
1/2
(
‖w‖H1(Ω1)+‖w‖H1(Ω2)

)
.

Proof. See [ER13, Lemma 4.10].

From Lemma 2.11 we obtain that for the H1 Riesz representative holds β′ ∈
[
H2(Ω1)

]d∩[
H2(Ω2)

]d :=
[
H2(Ω1,2)

]d. As discussed in Section 5.2, we want to achieve an accurate
approxmation of β′ at the interface Γ. By considering a discrete representative β′h we
introduce the errors

‖β′ − β′h‖X (6.12)
‖β′ − β′h‖[L2(Γ)]d . (6.13)

The extension βΓ
h introduces an additional approximation error

‖βΓ
h − β′‖[L2(Γ)]d . (6.14)

The next lemma shows that we can bound (6.14) by means of (6.12) and (6.13).

6.9. LEMMA [approximation error of βΓ
h ]

The following error bound on the velocity field βΓ
h holds:

‖βΓ
h − β′‖[L2(Γ)]d≤ C

(
‖β′ − β′h‖[L2(Γ)]d+h‖β′‖[H2(Ω1,2)]d+h

1/2‖β′ − β′h‖X
)
,

where ‖·‖2[H2(Ω1,2)]d := ‖·‖
2
[H2(Ω1)]d+‖·‖

2
[H2(Ω2)]d .

Proof. At first we note, that by the triangle inequality holds

‖βΓ
h − β′‖[L2(Γ)]d≤ ‖βΓ

h − β′h‖[L2(Γ)]d+‖β′h − β′‖[L2(Γ)]d . (6.15)

We will further derive an estimate for the first summand. For the components of βh
holds that βh,j ∈ Vh and thus βh,j |ΩΓ∈ Vh(ΩΓ) is a valid test function for the variational
problem (6.11). Taking advantage of that fact, we can use the variational formulation
(6.11) and Young’s inequality to obtain∫

ΩΓ

(
∇(βΓ

h,j − β′h,j) · n
φ
h

)2
+ h−1

∮
Γ
(βΓ
h,j − β′h,j)2

= h−1
∮

Γ
β′h,j(βΓ

h,j − β′h,j)−
∫

ΩΓ

(
∇β′h,j · n

φ
h

) (
∇(βΓ

h,j − β′h,j) · n
φ
h

)
− h−1

∮
Γ
β′h,j(βΓ

h,j − β′h,j)

≤ 1
4

∫
ΩΓ

(
∇β′h,j · n

φ
h

)2
+
∫

ΩΓ

(
∇(βΓ

h,j − β′h,j) · n
φ
h

)2
.



58 Chapter 6 FE Approximation of the Optimal Interface Problem

Substracting the second summand on the right hand side, multiplying by h and taking
the square root yields

‖βΓ
h − β′h‖[L2(Γ)]d≤

1
2h

1/2

√∫
ΩΓ

(
∇β′h,j · n

φ
h

)2
≤ h1/2‖∇β′h,j‖[L2(Uh(Γ)]d ,

where we used ΩΓ ⊂ Uh(Γ) in the last estimate. We obtain further by the triangle
inequality and Lemma 6.8

h
1/2‖∇β′h,j‖[L2(Uh(Γ)]d ≤ h

1/2‖β′ − β′h‖X+h1/2‖∇β′‖[L2(Uh(Γ)]d

≤ h1/2‖β′ − β′h‖X+Ch‖β′j‖H2(Ω1,2) .

All in all we have proven

‖βΓ
h − β′h‖[L2(Γ)]d≤ C

(
h‖β′‖[H2(Ω1,2)]d+h

1/2‖β′ − β′h‖X
)
.

Inserting this identity into (6.15) yields the claim.

Remark: If we assume error bounds similar to Assumption 5.4, the previous lemma
shows that the approximation error of βΓ

h can be bounded by the approximation error of
the discrete Riesz representative β′h and a term of order O(h). Hence, the approximation
error of βΓ

h won’t be worse than the error introduced by β′h.

Global Extension
A velocity field that is only defined on the band of cut elements ΩΓ is not suitable
for the level set transport, since we need a velocity field that is defined on whole Ω.
Motivated by the former lemma we define the global variant of (6.11) by replacing ΩΓ

with Ω. To obtain a descent direction with a moderate scaling, β′h is normalized before
it is extended.

find βeh,j ∈ Vh, j ∈ {1, 2} such that ∀vh ∈ Vh∫
Ω

(
∇βeh,j · n

φ
h

) (
∇vh · nφh

)
+ h−1

∮
Γ
βeh,jvh = h−1‖β′h‖−1

X

∮
Γ
β′h,jvh .

(6.16)

The resulting velocity field βeh ∈ [Vh]2 will be used in the level set transport equation
(4.14) to move the level set function φh,0.

Remark: The presented error analysis does not apply for the globally defined descent
direction βeh. However, if we would extend the locally defined descent direction βΓ

h to
Ω \ ΩΓ with the same strategy, we would obtain a global velocity field that fulfills the
error bounds of Lemma 6.9. In this thesis we chose a direct extension to Ω in order to
keep the optimization algorithm simpler.
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6.2.3 Optimization Algorithm
All the previously introduced discrete subproblems can be summarized by an optimiza-
tion algorithm that solves problem (3.1). We give a rough summary what happens in
one optimization step:

• Compute the discrete state and adjoint state uh, u∗h , (6.6), (6.7).

• Set up the discrete shape derivative dh[·], (6.9).

• Compute the descent direction βeh, (6.16).

• Move the discontinuous level set function along βeh (6.16) by means of (4.14) and
obtain φNh at the final time instance.

• Update the geometry by means of the interpolation operator (4.10),
φconth = Iφ,dch

(
φNh

)
.

• Compute the new state uh on the updated geometry.

• Check if the value of the shape function is reduced.

The complete procedure corresponding to this workflow is presented in Algorithm 1,
which is also the final result of this chapter.
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Algorithm 1: optimization algorithm for problem (3.1)
Data: TOL (tolerance), φ ∈ C(Ω) (exact initial level set function), Tmax (

maximum time step), Tmin ( minimum time step), Told = Tnew (initial time
step), imax (maximum number of iterations), p1 > 1 (increasing factor),
p2 ∈ (0, 1) (decreasing factor)

φconth = Iφ,conth (φ) // initialize CG level set function by interpolation (4.11)
φh,0 = φconth // initialize DG level set function
i = 0 // initialize iteration counter
Compute uh // solve for the state (6.6)
Res = J(uh) // set initial residual
Resold = Res // store residual of last iteration
while (Res > TOL) do

i += 1 // increase iteration counter
rejected = True // set boolean for time step adaption
Compute u∗h // solve for the adjoint state (6.7)
Set up dh[·] // discrete shape derivative according to (6.9)
Compute β′h // solve for the discrete Riesz representative (6.10)
Compute βeh // construct the descent direction according to (6.16)
Tnew = min (p1 · Told, Tmax) // set new time step size
while (rejected = True) do

Compute φNh // level set transport with βh = βeh, T = Tnew (4.14)
φconth = Iφ,dch

(
φNh

)
// set CG level set function by interpolation (4.10)

Compute uh // solve for the new state (6.6) on the update geometry
Res = J(uh) // set residual
if (Res < Resold) then

rejected = False // accept time step
φh,0 = φNh // update initial discontinuous level set function

else
Tnew = p2 · Tnew // reject time step and decrease step size
if (Tnew < Tmin) then

stop // time step too small

φconth = Iφ,dch (φh,0) // set CG level set function back to old domain

Resold = Res // update old residual
if (i > imax) then

stop // maximum number of iterations exceeded

Result: Optimal shape represented by φconth

Remark: The stopping criteria (Res ≤ TOL) may require a priori knowledge on the
behavior of the optimization problem. Alternatively we could stop if the residual does
not significantly improve anymore i.e. if Resold −Res < ε, where ε > 0 and i > 0.



Chapter 7

Numerical Results

In this chapter we will present numerical experiments to highlight the following aspects

• Section 7.1: Accuracy of descent directions for the one-phase model problem of
Section 3.2 with focus on the comparison between volume and boundary expression.

• Section 7.2: Accuracy of descent directions for the two-phase model problem of
Section 3.1 with focus on the choice of the approximation space.

• Section 7.3: Performance of the full optimization algorithm (Algorithm 1).

• Section 7.4: Comparison of the descent directions β′h (Riesz representative) and
βeh (anisotropic extension).

• Section 7.5: Behavior of geometry error and residual error.

All numerical methods and experiments have been implemented in the add-on library
ngsxfem to the Finite Element software NGSolve [Sch14].

7.1 Comparison of Volume and Boundary Expression
We recall the setting of Section 5.2. As a model problem we consider Ω0 = [−1,−1]×[1, 1]
for the holdall domain and the Dirichlet problem

−∆u = f in Ω (7.1)
u = 0 on ∂Ω , (7.2)

with f = 8
(
0.25− 2(x2 + y2)

)
and the shape function

J(Ω) =
∫

Ω
(u− uc)2 .

We choose uc = (x2 +y2−0.25)2, which is the exact solution to (7.1), where Ω is a circle
with radius 0.5 and center (0, 0). As initial domain we choose an ellipse corresponding
to the signed distance function

φ(x, y) =

√
x2

1.6 + y2

0.4 − 0.5 .

61
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Figure 7.1: Initial domain (left) with expected velocity field and optimal domain (right)

The domains are sketched in Figure 7.1. To get approximations of the two descent
directions we compute uh, u∗h with the fictitious domain method (5.1), (5.2). We further
compute the discrete Riesz representative β′h according to (5.6) and the discrete boundary
representative gh according to (5.11). The computations are done on a uniformly refined
mesh with meshsizes hn :=

√
2

2n , where n ∈ {0, . . . , 7}. To get comparable results we scale
both quantities by the L2-norm on the boundary. As a reference solution we choose the
finest approximation i.e gref := gh7 and β′ref := β′h7

. This yields the two error estimators

eVh =
(
‖β′h‖L2(∂Ω)

)−1
β′h −

(
‖β′ref‖L2(∂Ω)

)−1
β′ref defined on Ω

eBh =
(
‖gh‖L2(∂Ω)

)−1
gh −

(
‖gref‖L2(∂Ω)

)−1
gref defined on ∂Ω .

The results for ‖eVh ‖L2(∂Ω) and ‖eBh ‖L2(∂Ω) are shown in Figure 7.2. The results are in
accordance with the error bunds conjectured in Section 5.2. Moreover we see that the
approxmation based on the boundary expression does just show the prediced convercence
order of O(h1/2). On the other hand, the approximation based on the volume expression
shows a better behavior than the predicted O(h3/4). We can observe an experimental
order of O(h3/2).

Since eVh is defined on the entire holdall Ω0 we can also check the predicted conver-
gence properties with respect to the L2(Ω0), and H1(Ω0) norm, the results are shown in
Figure 7.3. In the H1(Ω0) norm, we can observe slightly better rates than the predicted
order of O(h1/2). In the L2(Ω0) norm we see an experimental order of O(h3/2), which is
better than the order O(h) that was assumed in Section 5.2.

A descent direction based on the boundary expression of the shape derivative can be
extended from the interface Γ into the whole domain Ω with a strategy similar to Section
6.2.2. That enables us to employ this velocity field for the level set transport step
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Figure 7.2: Errors estimators at the boundary
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Figure 7.3: Errors estimators in the volume
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Figure 7.4: Final shapes using a boundary based descent direction (left) and a volume
based descent direction (right)

in Algorithm 1. We can compare the performance of both directions (volume based,
boundary based) in the full optimization procedure. We consider the same example as
before and observe that the algorithm using the boundary based descent directon stops
much earlier with a residual of 3.36 · 10−3. Using the volume based descent direction βeh
yields a lower final residual of 1.34 · 10−3 and also the final domain looks much better.
The final shapes of both runs are shown in Figure 7.4.

7.2 Approximation Spaces for the Descent Direction
For the remaining part of this chapter we consider the two-phase model problem intro-
duced in Section 3.1. So far we considered an XFEM-approximation only for the discrete
state and adjoint state equation with corresponding solutions uh, u∗h. However, for the
discrete Riesz representative β′h we still used a conforming approach. In this section we
will investigate if an extended approximation of β′h yields better convergence results. We
recall the conforming, vector-valued Finite Element space

Xh := {τh ∈
[
H1

0 (Ω0)
]d

: τh|T∈ [P1(T )]d , T ∈ Th} .

The corresponding unfitted Finite Element space is defined similarly to Section 6.1 by

XΓ
h := Xh|Ω1⊕Xh|Ω2 .

To obtain a variational formulation we define the bilinear form bΓ(·, ·) : XΓ
h ×XΓ

h → R
by

bΓ(βh, ψh) := b(βh, ψh)−
∮

Γ
{{∇βhnΓ}} · [[ψh]]−

∮
Γ
{{∇ψhnΓ}} · [[βh]] +

∮
Γ

λ

h
[[βh]] · [[ψh]] ,
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Ω2

ΓΩ1

Figure 7.5: Robin boundary (green) and Neumann boundary (blue)

with λ = 40. Let dh[·] be the discrete shape derivative defined in (6.9), then the XFEM
variational formulation reads as

find βcut′h ∈ XΓ
h such that ∀ψh ∈ XΓ

h

bΓ(βcut′h ,ψh) = −dh[ψh] .
(7.3)

We consider the holdall domain Ω = [0, 2]×[0, 1] where the subdomain Ω1 is a circle with
center (0.3, 0.3) and radius 0.23. For the Neumann boundary we take ∂ΩN = {0}× [0, 1]
and thus ∂ΩR = ∂Ω \ ∂ΩN . The geometry is sketched in Figure 7.5.

Further we choose the following data

α1 = 2, α2 = 1, f1 = 10, ū = 0.4, γ0 = 1 .

Let β′h be defined by (6.10) and βcut
′

h by (7.3). Similarly to the previous section we
consider a sequence of meshsizes hn :=

√
2

2n , n ∈ {1, . . . , 8}. The reference solutions are
taken from the finest grid i.e. β′ref := β′h8

and βcut′ref := βcut
′

h8
. The error estimators are

defined by

eCh =
(
‖β′h‖X

)−1
β′h −

(
‖β′ref‖X

)−1
β′ref defined on Ω

eXh =
(
‖βcut′h ‖X

)−1
βcut

′
h −

(
‖βcut′ref ‖X

)−1
βcut

′
ref defined on Ω

{{eXh }} = 1
2
(
‖βcut′h ‖X

)−1 (
βcut

′
h |Ω1+βcut′h |Ω2

)
defined on Γ.

The average is necessary because βcut′h is not single valued on Γ. The results with respect
to the L2(Γ) norm are shown in Figure 7.6. We observe that both approximations show
the same experimental order of O(h), we do not obtain a higher convergence order by
applying an unfitted approach on the descent direction. Further it should be noted that
the order O(h) for the L2(Γ) norm is less than the corresponding order for the L2(∂Ω)
norm in case of the one-phase problem. There we observed ‖eVh ‖L2(∂Ω)= O(h3/2) on the
boundary.
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100 101 102
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h−1

Xh/XΓ
h approximations

O(h)
‖eCh ‖L2(Γ)
‖{{eXh }}‖L2(Γ)

Figure 7.6: Convergence rates on the interface Γ

We do also investigate the behavior of eCh , eVh with respect to the volume norms
‖·‖X and ‖·‖[L2(Ω)]2 . The results are shown in Figure 7.7. The experimental order of the
unfitted approximation with respect to the X-norm is slightly better and we reach almost
order O(h) whereas the conforming approximation shows only order O(h1/2). In the L2

norm we observe the same order O(h3/2) for both approximations. The experimental
convergence orders with respect to the volume norms coincide with those obtained for
the one-phase problem.
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Figure 7.7: Convergence rates in the volume Ω
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7.3 Full Geometry Optimization
In this section we will present two examples that show the full optimization algorithm
(Algorithm 1) in action.

Example 1
We will start with an easy reconstruction example to ensure that we obtain reasonable
results. As the holdall domain we consider the unit square Ω = [0, 1]2 with Robin
boundary conditions everywhere i.e. ∂ΩR = ∂Ω. Further we choose the following data

α1 = 2, α2 = 1, f1 = 1, γ0 = 1 .

The reference domain Ωref
1 is choosen a circle with center (0.7, 0.7) and radius 0.2, thus

the corresponding interface is defined by Γref := ∂Ωref
1 . The reference distribution ū is

approximated by the Finite Element solution of the variational problem

find ūh ∈ V Γref
h such that ∀vh ∈ V Γref

h

ah(ūh, vh) := Fh(vh) .

We start with an initial inner domain Ω1 that is a circle with center (0.4, 0.4), radius 0.3
and we seek to reconstruct Γref . The computations are done on a uniform triangular
mesh with meshsize h =

√
2

25 ≈ 0.044. The results are shown in Figure 7.9. We observe
that the circle is first shrinked to a smaller circle and afterwards transported to the
expected position. The algorithm stops, because the residual does not decrease anymore
and the minimum time step size is reached. A graph that shows how the residual
decreases is shown in Figure 7.8.

0 20 40 60

10−3

10−2

iteration

re
sid

ua
l

Figure 7.8: Residuals for the reconstruction example
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(a) iteration 1 (b) iteration 10

(c) iteration 15 (d) iteration 25

(e) iteration 45 (f) final domain and Γref (red)

Figure 7.9: Current domain and descent direction around the interface (reconstruction
example)
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In this case, a final residual of zero would be possible. However, a zero residual is not
achieved due to several discretization errors that perturb the accuracy.

• Discretization of the shape derivative d[·] → dh[·] by replacing the primal and
dual solutions u, u∗ by their discrete approximations uh, u∗h. Thus the exact Riesz
representative β′ is only approximated by the discrete one β′h.

• Since we do not consider a re-initialization step during the level set transport,
the signed distance property of the discrete level set function is perturbed. For a
deeper investigation of this effect we refer to the next section.

Example 2
For the next example we design a more interesting scenario. We consider a room that
has doors and windows which are modeled by a Robin boundary. The corresponding
geometry is sketched in Figure 7.10.

Figure 7.10: Room geometry with doors/windows (green) and isolated walls (blue)

Further we choose the following data

α1 = 10, α2 = 1, f1 = 180, γ0 = 1, ū(x, y) = 25− (x− 1)2 + 2y .

The initial inner domain Ω1 (location of the heat source) for the first attempt is chosen
according to the levelset function

φ(x, y) =

√
(x− 0.4)2

0.6 + (y − 0.5)2

1.4 − 0.25 .

The results are shown in Figure 7.13. We will check the robustness of the algorithm
with respect to the multiple transport steps by choosing an initial inner domain that is
closer to the optimal domain of the first attempt, therefore we set the initial level set
function to

φ(x, y) =

√
(x− 1.6)2

1.9 + (y − 0.7)2

0.1 − 0.4 .
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We hope that the final domain for the second attempt does not yield a significantly
smaller residual. The results for the second attempt are shown in Figure 7.12. Although
the final shape looks a bit different now, we obtain almost the same residual. The second
attempt needs much less iterations to terminate, which is also intuitive. The residuals
for both runs are shown in Figure 7.11. In the setting of the second example we don’t
have any knowledge on existence and/or uniqueness of optimal solutions. Therefore it is
not surprising that the algorithm terminates at different final shapes for different initial
values.

0 50 100 150 200
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10

15

20

iteration
0 50 100

5

10

15

20

iteration

Figure 7.11: Residual for first (left) and second attempt (right)

(a) iteration 1 (b) iteration 40

(c) final domain

Figure 7.12: Room heating example second attempt
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(a) iteration 1

(b) iteration 40

(c) iteration 80

(d) iteration 120

(e) final domain

Figure 7.13: Room heating example first attempt
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7.4 Velocity Extension
In this section we will give numerical evidence that the construction of the descent
direction according to section 6.2.2 helps to preserve the distance between the isolines of
the level set function. We consider a model problem on the rectangle [0, 2] × [0, 1] = Ω
with data

α1 = 2, α2 = 1, f1 = 10, γ0 = 0.5 , ū = 0.9 .

Again we take the left boundary as Neumann boundary ∂ΩN = {0} × [0, 1] and thus
∂ΩR = ∂Ω \ ∂ΩN . The initial domain is an ellipse close to the left boundary and yields
an initial residual of 0.488. The optimization is done twice, where we change the descent
direction in Algorithm 1 to the normalized discrete Riesz representative ‖β′h‖

−1
X β′h (6.10)

for the second run. Please note that this is also a descent direction according to Lemma
2.10. The results are shown in Figure 7.14 and 7.15. The algorithm stops when the resid-
ual does not decrease anymore and the minimum time step size is reached. This happens
in the first run after 271 iterations with a residual of 0.155 and in the second run after
136 iterations with a residual of 0.196. Inspecting the level set function, we can clearly
see that βeh preserves the signed distance property at least approximately. In case of
the modified descent direction, artefacts close to the interface can be observed. Further
the signed distance property is not at all preserved since the isolines on the right hand
side of the interface are extremely close whereas on the left hand side they are far apart.

Remark: This example shows that the quality of the discrete level set function can
have a huge impact on the optimization result. Of course, also the descent direction
‖β′h‖

−1
X β′h could be used but then it should be combined with a re-initialization method

(cf. Section 4.2).
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(a) descent direction βe
h

final iteration (271)
(b) modified descent direction

final iteration (136)

(c) descent direction βe
h

iteration 136
(d) initial level set function

Figure 7.14: Isolines ±0.1, ±0.05 (white) and 0 (red)

Figure 7.15: (uh − ū)2 after final iteration using the descent direction βeh
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7.5 Geometry and Residual Error
In this section we will consider an interface problem where the optimal solution is known
a priori. That enables us to investigate how the final residual and the final geometry
error decreases under mesh refinements. The holdall domain Ω is the unit circle and the
optimal inner domain Ωopt

1 is a circle with center (0.0) and radius 1
2 . As Robin boundary

we choose the entire boundary ∂ΩR = ∂Ω. For the data f1 = 1, α1 = 2, α2 = 1, γ0 = 1,
the solution of the interface problem (3.2)-(3.5) with Ω1 = Ωopt

1 is given by

ū(r) =
{5+4 log 2

32 − 1
8r

2 in Ωopt
1 ,

−1
8 log r + 1

8 in Ω \ Ωopt
1 ,

where r =
√
x2 + y2. For the initial geometry we choose the inner domain Ω1 as a circle

with center (0.2, 0.2) and radius 0.3. For a fixed mesh size h let uh be the final discrete
state and Γh the final discrete interface (by final we mean the results of Algorithm 1).
The quanties of interest are the square root of the final residual i.e. ‖uh − ū‖L2(Ω) and
the geometry error, which both ideally converge to zero. The latter one can be esti-
mated by means of the signed distance function corresponding to the optimal domain
φopt(x, y) =

√
x2 + y2− 0.5, evaluated on the discrete interface Γh. We measure the dis-

tance between the final interface and the optimal interface by ‖φopt‖L2(Γh). The results
for the sequence of mesh sizes hn = 1

2n , n ∈ {1, . . . , 6} are shown in Figure 7.16. We
observe that the geometry error decays with a rate of at least O(h1/2) and the residual
with O(h).

As a second example we will consider the same problem with a modified source function
f . Instead of a domain wise constant f , we choose f = 1 in the entire holdall domain Ω.
This modification does not exactly fit into the setting which was introduced in Section
3.1, nevertheless it will be included here because it yields some interesting results. The
corresponding exact solution is now given by

ū(r) =
{
−1

8r
2 + 23

32 in Ωopt
1 ,

−1
4r

2 + 3
4 in Ω \ Ωopt

1 .

We employ the same convergence studies as in the first case. The results are shown in
Figure 7.17. For the geometry error we gain half of an order which results in a decay of
O(h3/2). Concerning ‖uh − ū‖L2Ω, the result is even better. We can really see a decay
of order O(h2). This is remarkable since that rate is of optimal order. The decay of the
residual for all iterations and both source terms is shown in Figure 7.18.

Increasing the regularity of the source term from L2(Ω) to H1(Ω) seems to affect the
decay of the residual as well as the geometry error. However, since α1 6= α2, the regu-
larity of u, u∗ does not increase. Further numerical experiments show that we loose the
optimal order rate of O(h2) for the residual if α1 is increased.
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‖uh − ū‖L2(Ω)

Figure 7.16: Geometry error and residual (discontinuous source f)
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Figure 7.17: Geometry error and residual (continuous source f)
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Figure 7.18: Residuals of all iterations for the discontinuous source f (upper)
and the continuous source f (lower)



Chapter 8

Conclusion and Outlook

We presented a shape optimization method for a shape function constrained by a scalar
interface problem. In this chapter we summarize the most important aspects of this
thesis and point out open problems.

8.1 Summary
Analytical shape derivative
Based on standard techniques from the theory of shape optimization, we derived the
volume expression of the shape derivative for an interface problem with a domain wise
constant source term and Robin-Neumann boundary conditions in Section 3.1. The cor-
responding interface expression was also derived solely by elementary tools from vector
calculus.

Discrete volume and boundary expression
In Section 5.2 we considered the one-phase model problem and compared two descent
directions (βV OLh , βBNDh ) based on the volume expression resp. boundary expression.
Under reasonable assumptions on discretization errors, we showed that the volume based
descent direction is more accurate (cf. Lemma 5.6). In Section 7.1 we presented numer-
ical experiments in accordance with the bounds shown in Section 5.2.

Velocity extension
We have seen in Section 2.1 and 3.1 that under sufficient regularity assumptions, the
shape derivative depends only on normal components on the interface. Hence, there is
considerable freedom in the choice of the descent direction. In Section 6.2.2 we con-
structed a descent direction that helps to preserve the approximate signed distance
property of the discrete level set function during the level set transport. We also pre-
sented a proof of an estimate that bounds the approximation error on the interface (cf.
Lemma 6.9).

8.2 Open Problems
Error analysis and W k,p estimates
A major aspect of the error analysis of the presented shape optimization method would

78
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be an error bound on the velocity approximation i.e.

‖β′ − β′h‖X≤ Chq, q ∈ R .

In the following, we will outline the essential ingredients to derive such an estimate. The
presented ideas are based on the error analysis in [BEH+17]. We assume exact geometry
approximation and recall the definition of the exact shape derivative d[·] (3.23) and the
discrete shape derivative dh[·] (6.9). For the exact/discrete Riesz representatives β′, β′h
holds

b(β′, ψ) = −d[ψ] , ∀ψ ∈ X, (8.1)
b(β′h, ψh) = −dh[ψh] , ∀ψh ∈ Xh , (8.2)

with the inner product b(·, ·) on X =
[
H1

0 (Ω)
]d. For any ψh ∈ Xh we obtain by (8.1)/(8.2)

‖β′h − ψh‖2X = b(β′h − ψh, β′h − ψh)
= b(β′h − β′, β′h − ψh) + b(β′ − ψh, β′h − ψh)

≤
∣∣∣d[β′h − ψh]− dh[β′h − ψh]

∣∣∣+ ‖β′ − ψh‖X‖β′h − ψh‖X
.

Dividing by ‖β′h − ψh‖X yields further

‖β′h − ψh‖X ≤

∣∣∣d[β′h − ψh]− dh[β′h − ψh]
∣∣∣

‖β′h − ψh‖X
+ ‖β′ − ψh‖X

≤ sup
ϑh∈Xh

∣∣∣d[ϑh]− dh[ϑh]
∣∣∣

‖ϑh‖X
+ ‖β′ − ψh‖X

Finally we use the fact that ψh was arbitrary and the triangle inequality to conclude

‖β′ − β′h‖X ≤ 2 inf
ψh∈Xh

‖β′ − ψh‖X+ sup
ϑh∈Xh

∣∣∣d[ϑh]− dh[ϑh]
∣∣∣

‖ϑh‖X
.

Thus it remains to bound the consistency error, introduced by the discretization of the
shape derivative. This requires an additional regularity assumption on the solutions u, u∗
of the state/adjoint problem (3.11)/(3.22), namely

u, u∗ ∈W 1,∞(Ωi), i = 1, 2 . (8.3)

Remark: For the case d ≤ 3 (8.3) holds for u, u∗ ∈W 2,4(Ωi) by the Sobolev embedding
theorem (cf. [Alt12, Satz 8.8, p.342]).
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We take a closer look at the nominator of the consistency error∣∣∣d[ϑh]− dh[ϑh]
∣∣∣ ≤ ∣∣∣ ∫

Ω
div(ϑh)

(
(u− ū)2 − (uh − ū)2

) ∣∣∣
+
∣∣∣ ∫

Ω
div(ϑh)f(u∗ − u∗h)

∣∣∣
+
∣∣∣ ∫

Ω
2 (∇ū · vh) (u− uh)

∣∣∣
+
∣∣∣∣∣

2∑
i=1

αi

∫
Ωi

div(ϑh) [(∇u · ∇u∗)− (∇uh · ∇u∗h)]
∣∣∣∣∣

+
∣∣∣∣∣

2∑
i=1

αi

∫
Ωi

[(
(Dϑh +DϑTh )∇u

)
· ∇u∗ −

(
(Dϑh +DϑTh )∇uh

)
· ∇u∗h

] ∣∣∣∣∣
=: Q1 +Q2 +Q3 +Q4 +Q5 .

We will present the further treatment of the right hand side in detail for the summand
Q4. Let i ∈ {1, 2}, then Hölder’s inequality yields∣∣∣ ∫

Ωi
div(ϑh) [(∇u · ∇u∗)− (∇uh · ∇u∗h)]

∣∣∣
≤
∣∣∣ ∫

Ωi
div(ϑh) [∇(u− uh) · ∇u∗]

∣∣∣
+
∣∣∣ ∫

Ωi
div(ϑh) [∇u · ∇(u∗ − u∗h)]

∣∣∣
+
∣∣∣ ∫

Ωi
div(ϑh) [∇(u− uh) · ∇(u∗ − u∗h)]

∣∣∣
≤ C‖ϑh‖X ‖u− uh‖W 1,2(Ωi) ‖u

∗‖W 1,∞(Ωi)

+ C‖ϑh‖X ‖u∗ − u∗h‖W 1,2(Ωi) ‖u‖W 1,∞(Ωi)

+ C‖ϑh‖X ‖u− uh‖W 1,4(Ωi) ‖u
∗ − u∗h‖W 1,4(Ωi)

and thus we conclude

Q4 ≤ C‖ϑh‖X
(
‖u− uh‖W 1,2(Ωi)+‖u

∗ − u∗h‖W 1,2(Ω)+‖u− uh‖W 1,4(Ω)‖u∗ − u∗h‖W 1,4(Ω)
)
.

By similar techniques, one derives

Q1 ≤ C‖ϑh‖X ‖u− uh‖L4(Ω) ,

Q2 ≤ C‖ϑh‖X ‖u∗ − u∗h‖L2(Ω) ,

Q3 ≤ C‖ϑh‖X‖u− uh‖L2(Ω) ,

Q5 ≤ C‖ϑh‖X
(
‖u− uh‖W 1,2(Ωi)+‖u

∗ − u∗h‖W 1,2(Ω)+‖u− uh‖W 1,4(Ω)‖u∗ − u∗h‖W 1,4(Ω)
)
.

We define the overall error bound
B(u, uh, u∗, u∗h) := ‖u− uh‖W 1,2(Ωi)+‖u

∗ − u∗h‖W 1,2(Ω)+‖u− uh‖W 1,4(Ω)‖u∗ − u∗h‖W 1,4(Ω)

+ ‖u− uh‖L4(Ω) .

(8.4)
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Now we are able to bound the consistency error by means of (8.4)

sup
ϑh∈Xh

∣∣∣d[ϑh]− dh[ϑh]
∣∣∣

‖ϑh‖X
≤ sup

ϑh∈Xh

C B(u, uh, u∗, u∗h)‖ϑh‖X
‖ϑh‖X

= C B(u, uh, u∗, u∗h) .

Unfortunately B(u, uh, u∗, u∗h) containsW k,p estimates for k ∈ {0, 1} and p = 4. Optimal
order W k,p error estimates for piecewise standard linear Finite Elements are known in
the literature (cf. [RS82]). However, it is not clear if such estimates can also be derived
for piecewise linear unfitted Finite Element spaces. This is an interesting question for
future research, also isolated from the shape optimization context.

Unfitted approximation of the descent direction
The Riesz representative of the shape derivative posseses only limited global regularity
due to a kink at the interface (cf. Lemma 2.11). For such functions, the best approxi-
mation of the standard Finite Element space Xh is limited and can be improved by con-
sidering the corresponding unfitted Finite Element space XΓ

h (cf. Section 6.1). However,
we have seen in numerical experiments that an unfitted Finite Element discretization
of the descent direction does not significantly improve its approximation properties (cf.
Section 7.2). It needs to be investigated why the error bounds do not improve and if
this issue can be fixed by a modification of the variational formulation (7.3).

Higher order methods
Clearly, a natural extension of the presented method is the application of higher order
Finite Element spaces. Increasing the polynomial degree of the approximation spaces
(Wh,Vh,Xh) pays off if all components of the approximation process (u,u∗,Γh, β′h) reach
higher order accuracy. For the primal/dual solution and the discrete interface, this is
possible. In [LR17] the authors present an unfitted higher order method that offers
optimal order bounds for the Finite Element and geometry approximation. It remains
to clarify if also the discrete Riesz representative of the shape derivative β′h benefits from
higher order. In order to achieve higher order bounds for β′h it is necessary to improve
the error bounds for the unfitted low order approximation discussed in the previous
paragraph.

Re-initialization and topology changes
For a geometry optimization problem, where the topology of an optimal solution is
completely unknown, the approach of topology optimization may be better suited. Nev-
ertheless, it would be desirable that also the shape optimization approach with a level
set geometry representation allows for topology changes on a basic level, for instance
merging of two domains. In [BEH+17] the authors present a method that employs re-
initialization (cf. Section 4.2) and is able to perform basic topology changes in numerical
experiments. It would be interesting to investigate if the method presented in this thesis
allows basic topology changes if re-initialization is included in the level set transport.



Appendix A

Auxiliary Proofs

A.1. PROPOSITION [vector identity]
Let Ω ⊂ Rd a bounded domain and u, v ∈ H2(Ω), ϑ ∈

[
H1(Ω)

]d then the following vector
identity holds

ϑ · ∇(∇u · ∇v) +
(
(Dϑ+DϑT )∇u

)
· ∇v = ∇(ϑ · ∇u) · ∇v +∇(ϑ · ∇v) · ∇u .

Proof. The proof follows by direct calculation and the fact that ∂2u
∂xi∂xj

= ∂2u
∂xj∂xi

for
i, j ∈ {1, . . . , d}.

ϑ · ∇(∇u · ∇v) +
(
(Dϑ+DϑT )∇u

)
· ∇v

=
d∑
i=1

ϑi

 ∂

∂xi

 d∑
j=1

∂u

∂xj

∂v

∂xj

+
d∑
i=1

∂v

∂xi

 d∑
j=1

(
∂ϑi
∂xj

+ ∂ϑj
∂xi

)
∂u

∂xj


=

d∑
i,j=1

ϑi
∂v

∂xj

∂2u

∂xj∂xi
+

d∑
i,j=1

ϑi
∂2v

∂xj∂xi

∂u

∂xj

d∑
i,j=1

∂ϑi
∂xj

∂u

∂xj

∂v

∂xi
+

d∑
i,j=1

∂ϑj
∂xi

∂u

∂xj

∂v

∂xi

= ∇(ϑ · ∇u) · ∇v +∇(ϑ · ∇v) · ∇u .

Notation/Definition: We give a few definitions that are valid for the subsequent state-
ments:
Let Ω be a bounded domain in Rd and Ω1 ⊂ Ω with a C1 boundary Γ := ∂Ω1 and outer
unit normal nΓ. Further Ω2 := Ω \ Ω1.

A.2. PROPOSITION [tangential gradient continuity]
Let u ∈ H1(Ω) ∩H2(Ω1) ∩H2(Ω2) with [[u]] = 0 on Γ.

[[∇Γu]] = (P∇u) |Ω1− (P∇u) |Ω2= 0 in L2(Γ) . (A.1)

With the tangential projection P = I − nΓn
T
Γ .
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Proof. Denote by ui := u|Ωi , the restrictions of u to the subdomains. Since Γ ∈ C1 we
can find functions vi ∈ C∞(Ωi) smooth up to the interface with ‖ui − vi‖H2(Ωi)< ε (see
[Eva10, Theorem 3 p.266]).

To proof the statement we follow the ideas of [Stu15, Remark 3.3]. Let x ∈ Γ arbitrary
but fixed. Further we consider a C1 parametrization of the boundary γ : [0, T ] → Γ,
T > 0 with γ(0) = x and γ′(0) =: w. We differentiate [[v]] := v1 − v2 along the interface
and obtain

0 = d

dt
[[v(γ(t))]] = ∇v1 · γ′(0)−∇v2 · γ′(0)

= (P (∇v1 −∇v2)) · w + (∇v1 · nΓ −∇v2 · nΓ)nΓ · w
= (P (∇v1 −∇v2)) · w =: [[∇Γv]] · w

Since w was arbitrary but tangential we obtain that [[∇Γv]] is orthogonal to all tangential
vectors on Γ. By construction [[∇Γv]] is also orthogonal to nΓ and hence [[∇Γv]] = 0. The
trace theorem then implies∮

Γ
[[∇Γu]]2 ≤ C

(∮
Γ
(∇Γu1 −∇Γv1)2 +

∮
Γ
(∇Γv1 −∇Γv2)2 +

∮
Γ
(∇Γv2 −∇Γu1)2

)
≤ C

(
‖u1 − v1‖H2(Ω1)+‖u2 − v2‖H2(Ω2)

)
≤ Cε .

Since ε was arbitrary, this yields the claim.

A.3. PROPOSITION [approximation example]
There exist shape regular families of triangulations {Th}, interfaces Γ ∈ C1 and u ∈
H l(Ω1) ∩H l(Ω2) ∩H1(Ω) with l ≥ 2 such that

inf
vh∈V dch

‖u− vh‖L2(Ω)≥ Ch
3/2 ,

with the Finite Element space V dc
h := {vh ∈ L2(Ω) : vh|T∈ P1(T ), T ∈ Th}.

Proof. We construct an example for d = 1. The idea can be generalized to higher space
dimensions. We choose the following data

Ω = [0, 1]

Γ = 1
3

T nh = {[(j − 1)2−n, j2−n]}j=1,...,2n

u(x) =
{

1− 3x x ≤ 1/3

0 x > 1/3 .

Since u is a piecewise linear polynomial, the approximation error occurs only in the
element TΓ cut by the interface. Let lTΓ be the left endpoint of TΓ then we can define
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a mapping Φh that maps the reference element T̂ = [0, 1] onto TΓ by

Φh(x) = lTΓ + hx .

Applying the transformation on u yields

(u ◦ Φh)(x) =
{

1− 3Φh(x) Φh(x) ≤ 1/3

0 Φh(x) > 1/3 .

The left endpoint of TΓ can be rewritten with a real numer θ ∈ (0, 1) to lTΓ = 1/3− θh.
In fact θ ∈ {1/3, 2/3} and w.l.o.g. we assume θ = 1/3. Since Φh(x) ≤ 1/3 ⇔ x ≤ 1/3 we
obtain

(u ◦ Φh)(x) =
{
h(1− 3x) x ≤ 1/3

0 x > 1/3 .
= hu(x)

For the bestapproximation error holds

inf
vh∈V dch

‖u− vh‖2L2(Ω) = inf
vh∈V dch

‖u− vh‖2L2(TΓ)= inf
vh∈V dch

∫ l
TΓ+h

l
TΓ

(u− vh)2

= inf
vh∈V dch

h

∫ 1

0
(u ◦ Φh − vh ◦ Φh)2 = inf

wh∈P1(Ω)
h

∫ 1

0
(u ◦ Φh − wh)2 .

The bestapproximating element wh ∈ P1(Ω) is uniquely defined due to the orthogonal
projection in Hilbert spaces. We have wh(x) = ax+ b and the coefficients can be easily
identified by the two orthogonality relations∫ 1

0
(u ◦ Φh − ax− b) = 0∫ 1

0
(u ◦ Φh − ax− b)x = 0 .

Solving this linear system for the coefficients a, b yields

wh(x) = h

(
−7

9x+ 5
9

)
=: hw(x) .

Inserting this identity into the best approximation error yields

inf
vh∈V dch

‖u− vh‖2L2(Ω) = inf
wh∈P1(Ω)

h

∫ 1

0
(hu− wh)2

= h3
∫ 1

0
(u− w)2

and taking the square root yields the claim for C <
∫ 1

0 (u− w)2.
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