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Helioseismological data



What is helioseismology?

Oxford dictionary
“The study of the Sun’s interior by the observation and analysis of oscillations at its

surface.”

global helioseismology

■ input: frequencies of resonances

(eigenmodes)

■ yields radially symmetric

(reference) model of the Sun

local helioseismology

input: travel times / correlations of

oscillations

inverse boundary value problems, typically

in the frequency domain

2D/3D imaging of Sun (farside/interior)

Aims:

Space weather prediction Understanding the solar cycle
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Observed data

Dopplergrams from decades
Images of the line-of-sight velocities at the solar surface

computed from Doppler shifts of certain (atomic) spectral

lines.

Location Instrument Time Spatial temporal

resol. resol.

SDO satellite HMI: Helioseismic 05/2010 40962 45s

& Magnetic Imager – now

SOHO satellite MDI: Michelson 05/1996 10242 60s

Doppler Imager – 04/2011

GONG Fourier 1995 8392 60s

ground based Tachometer – now MDI image (from Gough1)

1
D. Gough, Vainu Bappu Memorial Lecture: What is a sunspot? 2010
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Origin of oscillations

The outer 28% of the solar interior form the solar convection zone.

Turbulence effectively acts as random perturbation.

Waves propagate from here to the surface where they can be observed.
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Preprocessed data



Correlations

Consider line-of-sight velocities ψ(ri , t) i = 1, 2.

Cross covariance between a point r1 at the equator

and r2 at a latitude of 40
◦.
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Correlations

Cross covariance between a point r1 at the equator

and r2 at a latitude of 40
◦.
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Waves are refracted due to rapid sound speed increase
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Correlation data

Cross-correlations in frequency domain

ψ(r1, t)→ ψ̂(ri , ω)

Observation time (21 years, cadence of 1 min)

⇝ large number of available frequencies

Cross-correlations

C (r1, r2, ω) = ψ̂(r1, ω)
∗ψ̂(r2, ω)

r1 and r2 are any points of 4096× 4096⇒≈ 1013 cross-correlations per frequency
Correlation data is extremely noisy ⇒ averaging in spatial and frequency domain
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Cross-covariance in time-distance diagram:

time-distance diagram2 ray approximation

Time-distance helioseismology3:
Reduce high-dimensional correlation data to smaller number of travel-times.

2
L. Gizon, A. C. Birch, H. C. Spruit. Local helioseismology: Three-dimensional imaging of the solar interior. ARAA, 2010.
3
T. Duvall Jr., S. Jefferies, J. Harvey, M. Pomerantz. Time-distance helioseismology. Nature, 1993.
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The forward solver:

Interior PDE model and discretization



Equations of solar oscillations
Perturbed flow equations

Assume there is a smooth stationary equilibrium ( · ) to
the equations of conservation of momentum and mass and gravitational potential

(no magnetic field yet)

Trajectory of a particle at x after perturbation: X (x, t) = X (x, t) + ξ(x, t)

Consider Lagrangian perturbation of conservation of momentum and mass

R(x+ ξ(x, t), t)− R(x, t)
Eulerian perturbation of equations for gravitational potential

R(x, t)− R(x, t)
and time-harmonic ansatz ξ(x, t) = Re(ξ exp(−iωt))

4
D. Lynden-Bell, J. Ostriker. On the stability of differentially rotating bodies. Monthly Not. Roy. Astr. Soc., 1967
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Equations of solar oscillations
We arrive at the following “monster”: (similar to Galbrun’s equation5 in Aeroacoustics)

ρ(−iω + u · ∇+Ω×)︸ ︷︷ ︸
=:D

2ξ−∇(ρc2s∇ · ξ)+(∇ · ξ)∇p −∇(∇p · ξ)

+(Hess(p)ξ − ρHess(φ))ξ−iγρωξ+ρ∇ϕ = s in D,

−
1

4πG
∆ϕ+∇ · (ρξ) = 0 in R3.

ξ: Lagrangian displacement: difference between perturbed/unperturbed position,

ϕ: perturbation of gravitational potential,

cs : sound speed, ρ: density,

u: background velocity, Ω: angular velocity,
φ: gravitational background potential, γ: damping,

ω: frequency, p: pressure
+ boundary conditions

Discretization?

5
H. Galbrun. Propagation d’une onde sonore dans l’atmosphère et théorie des zones de silence. 1931
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Helmholtz-type decomposition

straight-forward (DG) discretizations fail6

Let’s consider the leading order terms (for ξ):

+++ρ(−iω + u · ∇+Ω×)2ξ −−−∇(ρc2s∇ · ξ)− iργωξ + ... = f

crucial in the analysis7 is a Helmholtz-type decomposition of solution space

V = {ξ ∈ L2(D) : ∇ · ξ ∈ L2(D), (u · ∇)ξ ∈ L2(D), ν · ξ = 0 on ∂D} = X⊕ Y⊕ Z

with

X: (generalized) divergence-free functions
Y: gradients (compactly emb. in L2) with ∥∇ · y∥0 + ∥y∥0 ≳ ∥y∥V for all y ∈ Y
Z: a finite dimensional subspace

6
J. Chabassier, M. Duruflé. Solving time-harmonic Galbrun’s equation with an arbitrary flow. Application to Helioseismology. 2018.
7
M. Halla, T. Hohage. On the well-posedness of [...] and the equations of stellar oscillations. SIMA, 2021
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Discretizations with Helmholtz-type decomposition

Finite Element Methods

based in calculus of variation

→ solve variational formulation over finite dimensional space
approximate solution using polynomials on each mesh element

Choice of discretization (space)?

natural choice: Vh ⊂ H(div)
Vh ⊂ H(div) ⇝ Helmholtz-type decomposition
but: many more choices are possible...

L2
H(div)V

H1
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A simple model problem [Ma. project of T. Alemán]8

Simplified version (real, with artificial reaction term): Find ξ ∈ V, s.t.

⟨c2s ρ∇ · ξ,∇ · η⟩ −−− (⟨ρ(u · ∇)ξ, (u · ∇)η⟩+ ∥u∥∞ ⟨ρξ,η⟩)︸ ︷︷ ︸
a(ξ,η)

= ⟨f ,η⟩ ∀η ∈ V.

Generic discretization (V⇝ Vh, ∇·⇝ ∇h·, a(·, ·)⇝ ah(·, ·)): Find ξh ∈ Vh, s.t.

⟨c2s ρ∇h·ξh,∇h·ηh⟩ −−− ah(ξh,ηh) = ⟨f ,ηh⟩ ∀ηh ∈ Vh.

Discrete Helmholtz decomposition

Xh= {ξh ∈ Vh : ∇h·ξh = 0} Yh = Xh⊥ = {ξh ∈ Vh : ah(ξh,ηh) = 0 ∀ηh ∈ Xh}

and c∥yh∥V,h ≤
∥∥∇h·yh∥∥0 ∀yh ∈ Yh, c ̸= c(h, cs).

Good news: This is achieved by every inf-sup stable Stokes element!

⇝ Choose Vh, ∇h·, ah(·, ·) suitable for a Stokes(-type) problem.

8
T. Alemán. Robust Finite Element Discretizations for a PDE arising in Helioseismology. Master’s thesis. 2022
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Numerical example for simplified problem
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∇h· = ∇·
ah(·, ·) = a(·, ·)
ah(·, ·) = a(·, ·)
ah(·, ·) = aDG

h (·, ·)
O(h3)

Ongoing

Convergence analysis for full problem

Numerics for full problem

boundary conditions?
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The forward solver:

Boundary conditions for the Sun



Boundary conditions for helioseismology

Simplified scalar model:
u = cs∇ · ξ, current working horse (no gravity effects):(

√
ρ∆(ρ−

1
2 )− (ω + iγ)2

c2s

)
u −∆u = f

Atmosphere: No flows, spherically symmetric sound speed cs(r) and density ρ(r) (separability).

0.992 0.996 1 1.0033
0.5
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r [solar radius]

m
/s

ec
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10−11

10−8

10−5

10−2

kg
/m

3

c
ρ

Transparent bound. cond. are needed to truncate simulations close to surface!

Std. approaches (PML, loc. b.c.) fail due to rapidly changing material params..
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Tensor-product type boundary conditions

Γ
E

Many popular transparent b.c. follow (inherently sparse)

ansatz for discretization of exterior diff. op:[
AΓΓ AΓE
AEΓ AEE

]
⊗ M︸︷︷︸
≈IdΓ

+

[
BΓΓ BΓE

BEΓ BEE

]
⊗ K︸︷︷︸
≈−∆Γ

Here, A,B ∈ C(N+1)×(N+1) small matrices which encode

the discrete transparent b.c.. How to choose them?

Observation (assuming discretization in radial direction only)

The DtN map (representing the exterior solution operator) can be characterized by

(computable) numbers dtn(λ) (λ ∈ ∆Γ)

The discrete exterior solution operator can be characterized by numbers

dtnN(λ) = f (λ,A,B) (λ ∈ ∆Γ)

Idea of learned infinite elements9:

Optimize A and B to match known (computable) dtn!
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Learned infinite elements 9

Solve rational approximation problem (ωℓ ≥ 0)

min
A,B∈C(N+1)×(N+1)

∑
ℓ
ω2ℓ |dtn(λℓ)− dtnN(λℓ)|2.

Minimizers A and B represent local element matrices

of learned infinite elements.

Error analysis guarantees10 exponential convergence

on finite intervals using only O(N) DOFs.
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·104

`

dtnVAL-C(λ̂`)
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0
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Re

Im

poles

Approx. results for realistic

chromospheric model

9
T. Hohage, C.L., J. Preuß, Learned infinite elements, SISC 2021.

10
J. Preuß, Learned infinite elements for helioseismology, PhD thesis. 2021.
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Comparison

Time distance diagrams with diff. exterior domain models

(a) MDI observations (b) Atmo

(allows for abs. b.c.)

(c) VAL-C

(meshed)

(d) Learned IE

(lowest order)

Learned infinite elements are flexible w.r.t. to atmospheric model!

10
J. Preuß, Learned infinite elements for helioseismology, PhD thesis. 2021.
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The inverse problem:

Iterative holography (advertisement)



Helioseismic Holography

Seismic waves propagating

to/from solar surface11.

Forward problem: Lψ = r + s,
r , s: (stochastic) sources (bnd./int.), ψ wave field

Solve similar problem (backwards): Lφ = ψ,

where ψ takes the role of r (available data).

Alternative. Hologram:

Φωα(x) =

∫
A

Hωα (x , r
′)ψ(r ′, ω)dr ′,

Hωα : wave (back)propagator, A: observed part of surface

Holography has been successfully used (farside imaging)

But: Holography is not a quantitative method

11
C. Lindsey, D. C. Braun. Seismic imaging of the sun’s far hemisphere and its applications in space weather forecasting. Space Weather. 2017
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Helioseismic inverse problems

huge set of data →

reduction →
(looses information)

time-distance helioseismic

helioseismology holography

Dopplergrams ψ̂i
↙ ↘

cross-correlation hologram

C (r1, r2, ω) Φα = Hαψ̂iy y
travel times hologram intensity

↘

↙↙↙?

Inversion

← qualitative only?

Can we turn holography into a quantitative method?

Yes! holographic backpropagation can be understood as adjoint of covariance operator

⇝ allows to applied standard iterative inverse solvers
⇒ quantitative helioseismic holography (by iteration)
⇒ Helioseismic inversion without setup of full correllation data.

⇝ details: poster session C04
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Conclusion

Data

Large data sets (> 20 years, cadence ≈ 1 min, 40962 pixel)
Correlation data is even larger (⇝ travel times)

Forward solver

Scalar equation is working horse (does not capture gravity)

Learned infinite elements allow us to deal with complex atmosphere

Vector PDE is challenging (robust discretizations & efficiency)

Inversion

so far: time distance helioseismology and helioseismic holography

holography made quantitative (by iteration)

Tha
nk y
ou f
or y
our
atte
ntio
n!

Mor
e de
tails
? ⇝
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