Computational helioseismology

How to get our hands on the interior of the Sun

Tilman Alem´an, Damien Fournier, Laurent Gizon, Martin Halla, Thorsten Hohage, Christoph Lehrenfeld, Björn Müller, Janosch Preuß, Paul Stocker

C04: Correlations of solar oscillations: modeling and inversions

CRC 1456 Opening Symposium, March 17, 2022

Structure of the talk

Helioseismological data

- **Observed data**
- Preprocessed data

The forward solver

Input: excitations/parameters in the Sun Task: compute velocity (on the surface)

- **Interior PDE model and discretization**
- **Boundary conditions for the Sun**

The inverse problem

Input: measurements on the surface Task: compute excitation/parmeters in the Sun

Iterative holography (advertisement)

Structure of the talk

Helioseismological data

- **Observed data**
- Preprocessed data

The forward solver

Input: excitations/parameters in the Sun Task: compute velocity (on the surface)

- **Interior PDF model and discretization**
- **Boundary conditions for the Sun**

The inverse problem

Input: measurements on the surface Task: compute excitation/parmeters in the Sun

Iterative holography (advertisement)

LAUGUST-UNIVERSITÄT

More details? \rightsquigarrow C04 poster presentation (after plenary)

[Helioseismological data](#page-3-0)

What is helioseismology?

ΜΔΤΗΕΜΔΊ EXPERIMENT

Oxford dictionary

"The study of the Sun's interior by the observation and analysis of oscillations at its surface."

global helioseismology

- input: frequencies of resonances (eigenmodes)
- yields radially symmetric (reference) model of the Sun

Aims:

local helioseismology

- \blacksquare input: travel times / correlations of oscillations
- \blacksquare inverse boundary value problems, typically in the frequency domain
- 2D/3D imaging of Sun (farside/interior)
- Space weather prediction **Understanding the solar cycle**

RG-AUGUST-UNIVERSITÄT

Observed data

Dopplergrams from decades

Images of the line-of-sight velocities at the solar surface computed from Doppler shifts of certain (atomic) spectral lines.

ORG-AUGUST-UNIVERSITÄT **COTTINGEN**

Origin of oscillations

- \blacksquare The outer 28% of the solar interior form the solar convection zone.
- **Turbulence effectively acts as random perturbation.**
- Waves propagate from here to the surface where they can be observed.

[Preprocessed data](#page-7-0)

Correlations

GEORG-AUGUST-UNIVERSITÄT **COTTINGEN**

Correlations

- Consider line-of-sight velocities $\psi(\mathbf{r}_i, t)$ $i = 1, 2$.
- **Cross covariance between a point** r_1 **at the equator** and r_2 at a latitude of 40 \degree .

Correlations

Waves are refracted due to rapid sound speed increase

ORG-AUGUST-UNIVERSITÄT ÖTTINGEN

Correlation data

Cross-correlations in frequency domain

- $\psi(\mathbf{r}_1,t) \rightarrow \hat{\psi}(\mathbf{r}_i,\omega)$
- Observation time (21 years, cadence of 1 min) \rightarrow large number of available frequencies
- Cross-correlations

$$
C(\mathbf{r}_1, \mathbf{r}_2, \omega) = \hat{\psi}(\mathbf{r}_1, \omega)^* \hat{\psi}(\mathbf{r}_2, \omega)
$$

- **r**₁ and **r**₂ are any points of 4096 \times 4096 $\Rightarrow \approx 10^{13}$ cross-correlations per frequency
- Correlation data is extremely noisy \Rightarrow averaging in spatial and frequency domain

RG-AUGUST-UNIVERSITÄ

Cross-covariance in time-distance diagram:

CRC 1456 Mathematics of Experiment

Time-distance helioseismology³:

Reduce high-dimensional correlation data to smaller number of travel-times.

2 L. Gizon, A. C. Birch, H. C. Spruit. Local helioseismology: Three-dimensional imaging of the solar interior. ARAA, 2010.

ORG-AUGUST-UNIVERSITÄT **OTTINGEN**

 3 T. Duvall Jr., S. Jefferies, J. Harvey, M. Pomerantz. Time-distance helioseismology. Nature, 1993. CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 7/ 20

[The forward solver:](#page-13-0) [Interior PDE model and discretization](#page-13-0)

TINGEN

Equations of solar oscillations

Perturbed flow equations

- **CRC 1456** ΜΔΤΗΕΜΔΊ *EXPERIMENT*
- Assume there is a smooth stationary equilibrium $(\overline{\cdot})$ to the equations of conservation of momentum and mass and gravitational potential (no magnetic field yet)
- **Trajectory of a particle at x after perturbation:** $X(\mathbf{x}, t) = \overline{X}(\mathbf{x}, t) + \xi(\mathbf{x}, t)$

- **Example 2** Consider Lagrangian perturbation of conservation of momentum and mass $R(\mathbf{x} + \boldsymbol{\xi}(\mathbf{x}, t), t) - \overline{R}(\mathbf{x}, t)$
- Eulerian perturbation of equations for gravitational potential $R(\mathbf{x},t) - \overline{R}(\mathbf{x},t)$
- and time-harmonic ansatz $\xi(x, t) = Re(\xi exp(-i\omega t))$

ORG-AUGUST-UNIVERSITÄT ⁴D. Lynden-Bell, J. Ostriker. On the stability of differentially rotating bodies. Monthly Not. Roy. Astr. Soc., 1967 CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 8/ 20

Equations of solar oscillations

We arrive at the following "monster":

EXPERIMENT

.

$$
\rho \underbrace{(-i\omega + \mathbf{u} \cdot \nabla + \Omega \times)^2 \boldsymbol{\xi} - \nabla (\rho c_s^2 \nabla \cdot \boldsymbol{\xi}) + (\nabla \cdot \boldsymbol{\xi}) \nabla \rho - \nabla (\nabla \rho \cdot \boldsymbol{\xi})}_{\text{+(Hess}(\rho) \boldsymbol{\xi} - \rho \text{ Hess}(\phi)) \boldsymbol{\xi} - i\gamma \rho \omega \boldsymbol{\xi} + \rho \nabla \varphi = \mathbf{s} \text{ in } D, \\
-\frac{1}{4\pi\epsilon} \Delta \varphi + \nabla \cdot (\rho \boldsymbol{\xi}) = 0 \text{ in } \mathbb{R}^3
$$

- ξ: Lagrangian displacement: difference between perturbed/unperturbed position,
- φ : perturbation of gravitational potential,
- C_{S} : sound speed, ρ : density,
- u: background velocity, Ω : angular velocity,
- $φ$: gravitational background potential, $γ$: damping,
- ω : frequency, p : pressure

 $4\pi G$

-
-
-
- $+$ boundary conditions

ORG-AUGUST-UNIVERSITÄT ÖTTINGEN

 5 H. Galbrun. Propagation d'une onde sonore dans l'atmosphère et théorie des zones de silence. 1931

Equations of solar oscillations

We arrive at the following "monster":

EXPERIMENT

$$
\rho\underbrace{(-i\omega + \mathbf{u} \cdot \nabla + \Omega \times)^2 \boldsymbol{\xi} - \nabla (\rho c_s^2 \nabla \cdot \boldsymbol{\xi}) + (\nabla \cdot \boldsymbol{\xi}) \nabla \rho - \nabla (\nabla \rho \cdot \boldsymbol{\xi})}_{\text{+(Hess}(\rho) \boldsymbol{\xi} - \rho \text{ Hess}(\phi)) \boldsymbol{\xi} - i\gamma \rho \omega \boldsymbol{\xi} + \rho \nabla \varphi = \mathbf{s} \text{ in } D, \\
-\frac{1}{4\pi\epsilon} \Delta \varphi + \nabla \cdot (\rho \boldsymbol{\xi}) = 0 \text{ in } \mathbb{R}^3
$$

- ξ: Lagrangian displacement: difference between perturbed/unperturbed position,
- φ : perturbation of gravitational potential,
- C_{S} : sound speed, ρ : density,
- u: background velocity, Ω : angular velocity,
- $φ$: gravitational background potential, $γ$: damping,
- ω : frequency, p : pressure

 $4\pi G$

-
- -
- $+$ boundary conditions

3 .

Discretization?

FORG-AUGUST-UNIVERSITÄT ÖTTINGEN

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 9/ 20

 5 H. Galbrun. Propagation d'une onde sonore dans l'atmosphère et théorie des zones de silence. 1931

Helmholtz-type decomposition

6
6 J. Chabassier, M. Duruflé. Solving time-harmonic Galbrun's equation with an arbitrary flow. Application to Helioseismology. 2018.

⁷M. Halla, T. Hohage. On the well-posedness of [...] and the equations of stellar oscillations. SIMA, 2021

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 10/ 20

ORG-AUGUST-UNIVERSITÄT ÖTTINGEN

Helmholtz-type decomposition

- straight-forward (DG) discretizations $fail⁶$
- Let's consider the leading order terms (for ξ):

 $+\rho(-i\omega + \mathbf{u}\cdot\nabla + \Omega\times)^2\boldsymbol{\xi} - \nabla(\rho c_s^2\nabla\cdot\boldsymbol{\xi}) - i\rho\gamma\omega\boldsymbol{\xi} + ... = t$

⁷M. Halla, T. Hohage. On the well-posedness of [...] and the equations of stellar oscillations. SIMA, 2021

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 10/ 20

RG-AUGUST-UNIVERSITÄT TINGEN

^{6&}lt;br>6 J. Chabassier, M. Duruflé. Solving time-harmonic Galbrun's equation with an arbitrary flow. Application to Helioseismology. 2018.

Helmholtz-type decomposition

- straight-forward (DG) discretizations $fail⁶$
- Let's consider the leading order terms (for ξ):

$$
+\rho(-i\omega+\mathbf{u}\cdot\nabla+\Omega\times)^2\boldsymbol{\xi}-\nabla(\rho c_s^2\nabla\cdot\boldsymbol{\xi})-i\rho\gamma\omega\boldsymbol{\xi}+...=f
$$

crucial in the analysis⁷ is a Helmholtz-type decomposition of solution space $\mathbb{V} = \{ \boldsymbol{\xi} \in \mathsf{L}^2(D): \ \nabla \cdot \boldsymbol{\xi} \in L^2(D), \ (\mathbf{u} \cdot \nabla) \boldsymbol{\xi} \in \mathsf{L}^2(D), \ \nu \cdot \boldsymbol{\xi} = 0 \text{ on } \partial D \} = \mathbb{X} \oplus \mathbb{Y} \oplus \mathbb{Z}$

with

- X: (generalized) divergence-free functions
- $\mathbb{Y}\colon$ gradients (compactly emb. in $\mathsf{L}^2)$ with $\|\nabla\cdot\mathsf{y}\|_0+\|\mathsf{y}\|_0\gtrsim\|\mathsf{y}\|_\mathbb{V}$ for all $\mathsf{y}\in\mathbb{Y}$
- \blacksquare \mathbb{Z} : a finite dimensional subspace

6
6 J. Chabassier, M. Duruflé. Solving time-harmonic Galbrun's equation with an arbitrary flow. Application to Helioseismology. 2018.

⁷M. Halla, T. Hohage. On the well-posedness of [...] and the equations of stellar oscillations. SIMA, 2021

Discretizations with Helmholtz-type decomposition

Finite Element Methods

- **hased in calculus of variation**
	- \rightarrow solve variational formulation over finite dimensional space
- **a** approximate solution using polynomials on each mesh element

Discretizations with Helmholtz-type decomposition

Finite Element Methods

- **hased in calculus of variation**
	- \rightarrow solve variational formulation over finite dimensional space
- **a** approximate solution using polynomials on each mesh element

Choice of discretization (space)?

- natural choice: $V_h \subset H(div)$
- $\blacksquare \mathbb{V}_h \subset H(div) \rightsquigarrow$ Helmholtz-type decomposition
- **but:** many more choices are possible...

RG-AUGUST-UNIVERSITÄT

A simple model problem [Ma. project of T. Alemán]⁸

Simplified version (real, with artificial reaction term): Find $\xi \in \mathbb{V}$, s.t.

MATHEMATICS OF **EXPERIMENT**

ÖTTINGEN

Generic discretization ($\mathbb{V} \rightsquigarrow \mathbb{V}_h$, $\nabla \cdot \rightsquigarrow \nabla_h \cdot a(\cdot, \cdot) \rightsquigarrow a_h(\cdot, \cdot)$): Find $\mathcal{E}_h \in \mathbb{V}_h$, s.t.

 $\langle c_s^2 \rho \nabla_h \cdot \boldsymbol{\xi}_h, \nabla_h \cdot \boldsymbol{\eta}_h \rangle - \underline{a_h}(\boldsymbol{\xi}_h, \boldsymbol{\eta}_h) = \langle f, \boldsymbol{\eta}_h \rangle \ \forall \boldsymbol{\eta}_h \in \underline{\mathbb{V}_h}.$

 $\langle c_s^2 \rho \nabla \cdot \boldsymbol{\xi}, \nabla \cdot \boldsymbol{\eta} \rangle - (\langle \rho(\mathbf{u} \cdot \nabla) \boldsymbol{\xi}, (\mathbf{u} \cdot \nabla) \boldsymbol{\eta} \rangle + ||\mathbf{u}||_{\infty} \langle \rho \boldsymbol{\xi}, \boldsymbol{\eta} \rangle) = \langle f, \boldsymbol{\eta} \rangle \quad \forall \boldsymbol{\eta} \in \mathbb{V}.$ ${a(\xi,n)}$ $a(\xi, n)$

 8 T. Alemán. Robust Finite Element Discretizations for a PDE arising in Helioseismology. Master's thesis. 2022 ORG-AUGUST-UNIVERSITÄT

A simple model problem [Ma. project of T. Alemán]⁸

Simplified version (real, with artificial reaction term): Find $\xi \in \mathbb{V}$, s.t.

 $\langle c_s^2 \rho \nabla \cdot \boldsymbol{\xi}, \nabla \cdot \boldsymbol{\eta} \rangle - (\langle \rho(\mathbf{u} \cdot \nabla) \boldsymbol{\xi}, (\mathbf{u} \cdot \nabla) \boldsymbol{\eta} \rangle + ||\mathbf{u}||_{\infty} \langle \rho \boldsymbol{\xi}, \boldsymbol{\eta} \rangle) = \langle f, \boldsymbol{\eta} \rangle \quad \forall \boldsymbol{\eta} \in \mathbb{V}.$ ${a(\xi,n)}$ $a(\xi, n)$

Generic discretization ($\mathbb{V} \rightsquigarrow \mathbb{V}_h$, $\nabla \cdot \rightsquigarrow \nabla_h \cdot$, $a(\cdot, \cdot) \rightsquigarrow a_h(\cdot, \cdot)$): Find $\xi_h \in \mathbb{V}_h$, s.t.

$$
\langle c_s^2 \rho \nabla_h \boldsymbol{\xi}_h, \nabla_h \boldsymbol{\eta}_h \rangle - a_h(\boldsymbol{\xi}_h, \boldsymbol{\eta}_h) = \langle f, \boldsymbol{\eta}_h \rangle \ \forall \boldsymbol{\eta}_h \in \underline{\mathbb{V}}_h.
$$

Discrete Helmholtz decomposition

 $\mathbb{X}_h = \{\boldsymbol{\xi}_h \in \mathbb{V}_h : \nabla_h \cdot \boldsymbol{\xi}_h = 0\} \hspace{.5cm} \mathbb{Y}_h = \mathbb{X}_h^{\perp} = \{\boldsymbol{\xi}_h \in \mathbb{V}_h : \frac{\partial_h(\boldsymbol{\xi}_h, \boldsymbol{\eta}_h) = 0 \hspace{0.3cm} \forall \boldsymbol{\eta}_h \in \mathbb{X}_h\}$

and $c \|\mathbf{y}_h\|_{\mathbf{V},h} \le \left\|\nabla_h \cdot \mathbf{y}_h\right\|_0 \quad \forall \mathbf{y}_h \in \mathbb{Y}_h, \quad c \neq c(h, c_s).$

 8 T. Alemán. Robust Finite Element Discretizations for a PDE arising in Helioseismology. Master's thesis. 2022

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 12/ 20

ORG-AUGUST-UNIVERSITÄT ÖTTINGEN

\overline{A} simple model problem [Ma. project of T. Alemán]⁸

Simplified version (real, with artificial reaction term): Find $\xi \in \mathbb{V}$, s.t.

CRC 1456 MATHEMATICS OF **EXPERIMENT**

 $\langle c_s^2 \rho \nabla \cdot \boldsymbol{\xi}, \nabla \cdot \boldsymbol{\eta} \rangle - (\langle \rho(\mathbf{u} \cdot \nabla) \boldsymbol{\xi}, (\mathbf{u} \cdot \nabla) \boldsymbol{\eta} \rangle + ||\mathbf{u}||_{\infty} \langle \rho \boldsymbol{\xi}, \boldsymbol{\eta} \rangle) = \langle f, \boldsymbol{\eta} \rangle \quad \forall \boldsymbol{\eta} \in \mathbb{V}.$ ${a(\xi,n)}$ $a(\xi, n)$

Generic discretization ($\mathbb{V} \rightsquigarrow \mathbb{V}_h$, $\nabla \cdot \rightsquigarrow \nabla_h \cdot$, $a(\cdot, \cdot) \rightsquigarrow a_h(\cdot, \cdot)$): Find $\xi_h \in \mathbb{V}_h$, s.t.

$$
\langle c_s^2 \rho \underline{\nabla}_h \cdot \xi_h, \underline{\nabla}_h \cdot \eta_h \rangle - \underline{a_h}(\xi_h, \eta_h) = \langle f, \eta_h \rangle \ \forall \eta_h \in \underline{\nabla}_h.
$$

Discrete Helmholtz decomposition

 $\mathbb{X}_h = \{\boldsymbol{\xi}_h \in \mathbb{V}_h : \nabla_h \cdot \boldsymbol{\xi}_h = 0\} \hspace{.5cm} \mathbb{Y}_h = \mathbb{X}_h^{\perp} = \{\boldsymbol{\xi}_h \in \mathbb{V}_h : \frac{\partial_h(\boldsymbol{\xi}_h, \boldsymbol{\eta}_h) = 0 \hspace{0.3cm} \forall \boldsymbol{\eta}_h \in \mathbb{X}_h\}$

and
$$
c \|\mathbf{y}_h\|_{\mathbb{V},h} \le \left\|\nabla_h \mathbf{y}_h\right\|_0 \quad \forall \mathbf{y}_h \in \mathbb{Y}_h, \quad c \ne c(h, c_s).
$$

Good news: This is achieved by every inf-sup stable Stokes element! \rightsquigarrow Choose \mathbb{V}_h , $\nabla_h \cdot$, $a_h(\cdot, \cdot)$ suitable for a Stokes(-type) problem.

ORG-AUGUST-UNIVERSITÄT

Experiment

 $\overline{\mathrm{d}}$

CRC 1456 Mathematics

⁸T. Alemán. Robust Finite Element Discretizations for a PDE arising in Helioseismology. Master's thesis. 2022 CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 12/ 20

Numerical example for simplified problem

JEORG-AUGUST-UNIVERSITÄT COTTINGEN

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 13/ 20

CRC 1456

EXPERIMENT

Numerical example for simplified problem

Ongoing

- Convergence analysis for full problem
- Numerics for full problem

ORG-AUGUST-UNIVERSITÄT **OTTINGEN**

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 13/ 20

RC 1456

EXPERIMENT

Numerical example for simplified problem

- Convergence analysis for full problem
- Numerics for full problem

boundary conditions?

ORG-AUGUST-UNIVERSITÄT ÖTTINGEN

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 13/ 20

1456

EXPERIMENT

[The forward solver:](#page-28-0) [Boundary conditions for the Sun](#page-28-0)

Boundary conditions for helioseismology

Simplified scalar model:

 $u = c_s \nabla \cdot \boldsymbol{\xi}$, current working horse (no gravity effects):

$$
\left(\sqrt{\rho}\Delta(\rho^{-\frac{1}{2}})-\frac{(\omega+i\gamma)^2}{c_s^2}\right)u-\Delta u=f
$$

Atmosphere: No flows, spherically symmetric sound speed $c_s(r)$ and density $\rho(r)$ (separability).

TTINCEN

Tensor-product type boundary conditions

Many popular transparent b.c. follow (inherently sparse) ansatz for discretization of exterior diff. op:

 $\begin{bmatrix} A_{\mathsf{F}\mathsf{F}} & A_{\mathsf{F}\mathsf{E}} \\ A_{\mathsf{E}\mathsf{F}} & A_{\mathsf{E}\mathsf{E}} \end{bmatrix} \otimes$ \approx ldr M \approx Id_Γ $+\begin{bmatrix} B_{\Gamma\Gamma} & B_{\Gamma E} \\ B_{E\Gamma} & B_{E E} \end{bmatrix} \otimes \underbrace{\mathcal{K}}$ |{z} ≈−∆^Γ

Here, $A, B \in \mathbb{C}^{(N+1)\times(N+1)}$ small matrices which encode the discrete transparent b.c.. How to choose them?

ORG-AUGUST-UNIVERSITÄT **STTINGEN**

Tensor-product type boundary conditions

Many popular transparent b.c. follow (inherently sparse) ansatz for discretization of exterior diff. op:

Here, $A, B \in \mathbb{C}^{(N+1)\times(N+1)}$ small matrices which encode the discrete transparent b.c.. How to choose them?

Observation (assuming discretization in radial direction only)

- \blacksquare The $\mathcal{D}t\mathcal{N}$ map (representing the exterior solution operator) can be characterized by (computable) numbers *dtn*(λ) (λ ∈ ∆Γ)
- The discrete exterior solution operator can be characterized by numbers $\text{dtn}_N(\lambda) = f(\lambda, A, B)$ $(\lambda \in \Delta_\Gamma)$

RG-AUGUST-UNIVERSITÄ

Tensor-product type boundary conditions

Many popular transparent b.c. follow (inherently sparse) ansatz for discretization of exterior diff. op:

 $\begin{bmatrix} A_{\mathsf{F}\mathsf{F}} & A_{\mathsf{F}\mathsf{E}} \\ A_{\mathsf{E}\mathsf{F}} & A_{\mathsf{E}\mathsf{E}} \end{bmatrix} \otimes$ \approx ldr M \approx Id_Γ $+\begin{bmatrix} B_{\Gamma\Gamma} & B_{\Gamma E} \\ B_{E\Gamma} & B_{E E} \end{bmatrix} \otimes \underbrace{\mathcal{K}}$ |{z} ≈−∆^Γ

Here, $A, B \in \mathbb{C}^{(N+1)\times(N+1)}$ small matrices which encode the discrete transparent b.c.. How to choose them?

Observation (assuming discretization in radial direction only)

- \blacksquare The $\mathcal{D}t\mathcal{N}$ map (representing the exterior solution operator) can be characterized by (computable) numbers $\text{dtn}(\lambda)$ ($\lambda \in \Delta_{\Gamma}$)
- The discrete exterior solution operator can be characterized by numbers $\text{dtn}_N(\lambda) = f(\lambda, A, B)$ $(\lambda \in \Delta_\Gamma)$

Idea of learned infinite elements⁹:

Optimize A and B to match known (computable) *dtn*!

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 15/ 20

STTINGEN

Learned infinite elements⁹

Approx. results for realistic chromospheric model

Solve rational approximation problem $(\omega_{\ell} > 0)$

min
A,B∈ $\mathbb{C}^{(N+1)\times(N+1)}$ $\sum_{\ell} \omega_{\ell}^2 | \text{dim}(\lambda_{\ell}) - \text{dim}_{N}(\lambda_{\ell}) |^2.$

- **Minimizers A and B represent local element matrices** of learned infinite elements.
- **E** Frror analysis quarantees¹⁰ exponential convergence on finite intervals using only $\mathcal{O}(N)$ DOFs.

ORG-AUGUST-UNIVERSITÄT ¹⁰J. Preuß, Learned infinite elements for helioseismology, PhD thesis. 2021.

⁹T. Hohage, C.L., J. Preuß, Learned infinite elements, SISC 2021.

Comparison

Time distance diagrams with diff. exterior domain models

¹⁰J. Preuß, Learned infinite elements for helioseismology, PhD thesis. 2021. **GEORG-AUGUST-UNIVERSITÄT COTTINGEN**

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 17/ 20

CRC 1456

MATHEMATICS OF

Comparison

Time distance diagrams with diff. exterior domain models

Learned infinite elements are flexible w.r.t. to atmospheric model!

ORG-AUGUST-UNIVERSITÄT **TTINGEN**

CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 17/ 20

CRC 1456

MATHEMATICS OF

¹⁰J. Preuß, Learned infinite elements for helioseismology, PhD thesis. 2021.

[The inverse problem:](#page-36-0) [Iterative holography \(advertisement\)](#page-36-0)

Forward problem: $\mathcal{L}\psi = r + s$,

- MATHEMATICS OF **EXPERIMENT**
- r, s: (stochastic) sources (bnd./int.), ψ wave field

GEORG-AUGUST-UNIVERSITÄT **COTTINGEN**

 11 C. Lindsey, D. C. Braun. Seismic imaging of the sun's far hemisphere and its applications in space weather forecasting. Space Weather. 2017 CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 18/ 20

Seismic waves propagating to/from solar surface 11 .

- **Forward problem:** $\mathcal{L}\psi = r + s$,
	- r, s: (stochastic) sources (bnd./int.), ψ wave field
- Solve similar problem (backwards): $\mathcal{L}\phi = \psi$, where ψ takes the role of r (available data).

FORG-AUGUST-UNIVERSITÄT **COTTINGEN**

 11 C. Lindsey, D. C. Braun. Seismic imaging of the sun's far hemisphere and its applications in space weather forecasting. Space Weather. 2017 CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 18/ 20

Seismic waves propagating to/from solar surface 11 .

- **Forward problem:** $\mathcal{L}\psi = r + s$.
	- r, s: (stochastic) sources (bnd./int.), ψ wave field
- Solve similar problem (backwards): $\mathcal{L}\phi = \psi$, where ψ takes the role of r (available data).
- Alternative. Hologram:

$$
\Phi_{\alpha}^{\omega}(x) = \int_A H_{\alpha}^{\omega}(x, r') \psi(r', \omega) dr',
$$

 H_{α}^{ω} : wave (back)propagator, A: observed part of surface

^{11&}lt;sub>C.</sub> Lindsey, D. C. Braun. Seismic imaging of the sun's far hemisphere and its applications in space weather forecasting. Space Weather. 2017 CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 18/ 20

Seismic waves propagating to/from solar surface 11 .

- **Forward problem:** $\mathcal{L}\psi = r + s$.
	- r, s: (stochastic) sources (bnd./int.), ψ wave field
- Solve similar problem (backwards): $\mathcal{L}\phi = \psi$, where ψ takes the role of r (available data).
- Alternative. Hologram:

$$
\Phi_{\alpha}^{\omega}(x) = \int_A H_{\alpha}^{\omega}(x, r') \psi(r', \omega) dr',
$$

 H_{α}^{ω} : wave (back)propagator, A: observed part of surface \blacksquare Holography has been successfully used (farside imaging)

ORG-AUGUST-UNIVERSITÄT **DTTINGEN**

^{11&}lt;sub>C.</sub> Lindsey, D. C. Braun. Seismic imaging of the sun's far hemisphere and its applications in space weather forecasting. Space Weather. 2017 CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 18/ 20

Seismic waves propagating to/from solar surface 11 .

- **Forward problem:** $\mathcal{L}\psi = r + s$.
	- r, s: (stochastic) sources (bnd./int.), ψ wave field
- Solve similar problem (backwards): $\mathcal{L}\phi = \psi$, where ψ takes the role of r (available data).
- Alternative. Hologram:

$$
\Phi_{\alpha}^{\omega}(x) = \int_A H_{\alpha}^{\omega}(x, r') \psi(r', \omega) dr',
$$

- H_{α}^{ω} : wave (back)propagator, A: observed part of surface \blacksquare Holography has been successfully used (farside imaging)
- But: Holography is not a quantitative method

ORG-AUGUST-UNIVERSITÄT **TTINGEN**

 11 C. Lindsey, D. C. Braun. Seismic imaging of the sun's far hemisphere and its applications in space weather forecasting. Space Weather. 2017 CRC 1456 Opening Symposium, March 17, 2022 – C. Lehrenfeld – Computational helioseismology 18/ 20

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

JEORG-AUGUST-UNIVERSITÄT COTTINGEN

JEORG-AUGUST-UNIVERSITÄT COTTINGEN

Can we turn holography into a quantitative method?

ORG-AUGUST-UNIVERSITÄT ÖTTINGEN

Can we turn holography into a quantitative method?

Yes! holographic backpropagation can be understood as adjoint of covariance operator

- \rightsquigarrow allows to applied standard iterative inverse solvers
- \Rightarrow quantitative helioseismic holography (by iteration)
- \Rightarrow Helioseismic inversion without setup of full correllation data.

ORG-AUGUST-UNIVERSITÄT **TTINGEN**

 \rightsquigarrow details: poster session C04

Conclusion

Data

1456 MATHEMATICS OF *EXPERIMENT*

- **■** Large data sets (> 20 years, cadence \approx 1 min, 4096² pixel)
- Correlation data is even larger (\rightsquigarrow travel times)

Forward solver

- Scalar equation is working horse (does not capture gravity)
- **E** Learned infinite elements allow us to deal with complex atmosphere
- Vector PDE is challenging (robust discretizations & efficiency)

Inversion

- so far: time distance helioseismology and helioseismic holography
- \blacksquare holography made quantitative (by iteration)

C-AUGUST-UNIVERSITÄ

Conclusion

Data

- Large data sets (> 20 years, cadence \approx 1 min, 4096 biles
- Correlation data is even larger (\sim travel \star in $\partial\overline{\Psi}$

Forward solver

- Scalar equation K working horse (does not capture gravity) Learned infinite elements allow us to deal with complex atmosphere $\frac{1}{100}$ data sets (> 20 years, cadence \approx 1 min. 400 ntil 0 ntil attention data is even larger (\approx travelyting the Contract Level of the contract of $\frac{1}{100}$ ntil $\frac{1}{100}$ solver
- Vector PDE is challenging $\langle \mathbf{q} \rangle$ ot discretizations & efficiency) Inversion More detailed and the More detailed and the detailed and the detailed and the detailed and the detail of the detailed and the detail of the deta

- so far: time distance helioseismology and helioseismic holography
- \blacksquare holography made quantitative (by iteration)

CRC 1456

MATHEMATICS OF EXPERIMENT