Unfitted mixed finite element methods

Guosheng Fu¹, Christoph Lehrenfeld², Tim van Beeck²

ECCOMAS, Oslo, June 6, 2022

Background: Unfitted FEM

Problems

- PDEs on domains with separate geometry description (e.g. level set)
- PDEs on embedded surfaces
- PDEs on moving domains

Challenges

- FE formulation in unfitted setting
- Stability/robustness for arbitrary (small) cuts
- Imposition of boundary/interface conditions
- Cut integration (robust / high order accurate)

Solution techniques

- unfitted FE spaces (CutFEM / XFEM / Finite Cell / Unfitted FEM / ...)
- Weak imposition of boundary conditions through Nitsche / stab. Lagrange mult.
- Ghost () penalty / aggregated FEM

Background: Unfitted FEM

ECCOMAS 2022, Oslo, June 6, 2022 - C. Lehrenfeld - Unfitted mixed finite element methods

Examples: Mixed formulation of the Poisson and Stokes problems

Mixed Poisson/Darcy:Stokes:Find u, p with $p = p_D$ on $\partial\Omega$, s.t.Find u, p with $u = u_D$ on $\partial\Omega$, s.t. $\mathcal{K}^{-1}u - \nabla p = 0$ in Ω , $-\Delta u + \nabla p = f$ in Ω ,div u = -f in Ω .div u = 0 in Ω ,

Constraint equation correspond to mass conservation (*p* is Lagrange multiplier).

Examples: Mixed formulation of the Poisson and Stokes problems

Mixed Poisson/Darcy:Stokes:Find u, p with $p = p_D$ on $\partial\Omega$, s.t.Find u, p with $u = u_D$ on $\partial\Omega$, s.t. $\mathcal{K}^{-1}u - \nabla p = 0$ in Ω , $-\Delta u + \nabla p = f$ in Ω ,div u = -f in Ω .div u = 0 in Ω ,

Constraint equation correspond to mass conservation (*p* is Lagrange multiplier).

General unfitted saddle point problems

Find
$$(u, p) \in \Sigma \times Q$$
, s.t. $a(u, v) + b(v, p) = g(v), \forall v \in \Sigma,$
 $b(u, q) = h(q), \forall q \in Q.$

Examples: Mixed formulation of the Poisson and Stokes problems

Mixed Poisson/Darcy:Stokes:Find u, p with $p = p_D$ on $\partial\Omega$, s.t.Find u, p with $u = u_D$ on $\partial\Omega$, s.t. $\mathcal{K}^{-1}u - \nabla p = 0$ in Ω , $-\Delta u + \nabla p = f$ in Ω ,div u = -f in Ω .div u = 0 in Ω ,

Constraint equation correspond to mass conservation (*p* is Lagrange multiplier).

General unfitted saddle point problems

Find
$$(u, p) \in \Sigma \times Q$$
, s.t. $a(u, v) + b(v, p) = g(v), \forall v \in \Sigma$,
 $b(u, q) = h(q), \forall q \in Q$.

(inf-sup) stability in the presence of arbitrary cuts ?

Literature I/II: \mathfrak{A} -penalties on u and p:

- Stokes (advantage: H1-conformity) based on stable fitted method:
 - Stabilized vel./press. pairs¹
 - Taylor-Hood ^{2,3}
 - Scott-Vogelius (macro-element version, exactly divfree^{*}) [+grad-div)]⁴
- Poisson/Darcy and Stokes-Darcy based on stable fitted method:
 - $\mathbb{RT}^k / \mathbb{BDM}^k \times \mathbb{P}^k$ (inf-sup-stable (in the fitted case) pairs)^{5,6}

¹A. Massing, M.G. Larson, A. Logg, M.E. Rognes, A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sc. Comp., 2014

²M. Kirchhart, S. Groß, A. Reusken, Analysis of an XFEM Discretization for Stokes Interface Problems. SISC, 2016

³J. Guzmán, M. Olshanskii, Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comp., 2018

⁴H. Liu, M. Neilan, M. Olshanskii, A CutFEM divergence-free discretization for the Stokes problem. arXiv: 2110.11456

⁵R. Puppi, A cut finite element method for the Darcy problem. arXiv: 2111.09922

⁶P. Cao, J. Chen, An extended finite element method for coupled Darcy-Stokes problems. IJNME, 2022

Literature I/II: \mathfrak{A} -penalties on u and p:

- Stokes (advantage: H1-conformity) based on stable fitted method:
 - Stabilized vel./press. pairs¹
 - Taylor-Hood ^{2,3}
 - Scott-Vogelius (macro-element version, exactly divfree^{*}) [+grad-div)]⁴
- Poisson/Darcy and Stokes-Darcy based on stable fitted method:
 - $\mathbb{RT}^k / \mathbb{BDM}^k \times \mathbb{P}^k$ (inf-sup-stable (in the fitted case) pairs)^{5,6}

Stabilized formulations:

Find
$$(u_h, p_h) \in \Sigma \times Q$$
, s.t. $(a_{(h)} + \underline{\mathfrak{B}}_u)(u_h, v_h) + b_{(h)}(v_h, p_h) = g(v_h), \quad \forall v_h \in \Sigma_h,$
 $b_{(h)}(u_h, q_h) - (d_h + \underline{\mathfrak{B}}_p)(p_h, q_h) = h(q_h), \quad \forall q_h \in Q_h.$

¹A. Massing, M.G. Larson, A. Logg, M.E. Rognes, A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sc. Comp., 2014

²M. Kirchhart, S. Groß, A. Reusken, Analysis of an XFEM Discretization for Stokes Interface Problems. SISC, 2016

³J. Guzmán, M. Olshanskii, Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comp., 2018

⁴H. Liu, M. Neilan, M. Olshanskii, A CutFEM divergence-free discretization for the Stokes problem. arXiv: 2110.11456

⁵R. Puppi, A cut finite element method for the Darcy problem. arXiv: 2111.09922

⁶P. Cao, J. Chen, An extended finite element method for coupled Darcy-Stokes problems. IJNME, 2022

Literature I/II: \mathfrak{A} -penalties on u and p:

- Stokes (advantage: H1-conformity) based on stable fitted method:
 - Stabilized vel./press. pairs¹
 - Taylor-Hood ^{2,3}
 - Scott-Vogelius (macro-element version, exactly divfree^{*}) [+grad-div)]⁴
- Poisson/Darcy and Stokes-Darcy based on stable fitted method:
 - $\mathbb{RT}^k / \mathbb{BDM}^k \times \mathbb{P}^k$ (inf-sup-stable (in the fitted case) pairs)^{5,6}

Stabilized formulations:

Find
$$(u_h, p_h) \in \Sigma \times Q$$
, s.t. $(a_{(h)} + \underline{\mathfrak{B}}_u)(u_h, v_h) + b_{(h)}(v_h, p_h) = g(v_h), \quad \forall v_h \in \Sigma_h,$
 $b_{(h)}(u_h, q_h) - (d_h + \underline{\mathfrak{B}}_p)(p_h, q_h) = h(q_h), \quad \forall q_h \in Q_h.$

 \sim inf-sup-stability of global bilinear form (independent of cut position) 🤙, but mass conservation polluted 🗲

¹A. Massing, M.G. Larson, A. Logg, M.E. Rognes, A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sc. Comp., 2014

²M. Kirchhart, S. Groß, A. Reusken, Analysis of an XFEM Discretization for Stokes Interface Problems. SISC, 2016

³J. Guzmán, M. Olshanskii, Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comp., 2018

⁴H. Liu, M. Neilan, M. Olshanskii, A CutFEM divergence-free discretization for the Stokes problem. arXiv: 2110.11456

⁵R. Puppi, A cut finite element method for the Darcy problem. arXiv: 2111.09922

⁶P. Cao, J. Chen, An extended finite element method for coupled Darcy-Stokes problems. IJNME, 2022

ECCOMAS 2022, Oslo, June 6, 2022 - C. Lehrenfeld - Unfitted mixed finite element methods

Literature II/II: No \mathfrak{P} -penalty on *p*-*q*-coupling

For Darcy interface problem:

- **•** $\mathbb{RT}^0 \times \mathbb{P}^0$ (inf-sup-stable pair^{*}) (low order, 2D) ⁷
- **R** $\mathbb{T}/\mathbb{BDM} \times \mathbb{P}^k$, inf-sup-stable pair^{*} + \mathfrak{M} -penalties for divergence ⁸

Find $(u_h, p_h) \in \Sigma_h \times Q_h$, s.t. $(a + \underline{\mathfrak{B}}_u)(u_h, v_h) + (b + \underline{\mathfrak{B}}^*)(v_h, p_h) = g(v_h), \quad \forall v_h \in \Sigma_h,$ $(b + \underline{\mathfrak{A}}^*)(u_h, q_h) = h(q_h), \quad \forall q_h \in Q_h.$

$$\mathfrak{B}^{*}(\mathbf{v}_{h}, \mathbf{q}_{h}) = \mathfrak{B}_{p}(\operatorname{div} \mathbf{v}_{h}, \mathbf{q}_{h}) = \sum_{F \in \mathcal{F}_{h}} \sum_{j=0}^{k} \gamma h^{2j+1} \int_{F} \llbracket D^{j} \operatorname{div} \mathbf{v}_{h} \rrbracket \llbracket D^{j} \mathbf{q}_{h} \rrbracket ds$$

mass balance hardly polluted

(effectively using a smooth ext of f on the active mesh, possibly by patch- \mathfrak{P} -penalties) $f \in \mathbb{P}^k \Rightarrow \operatorname{div} u_h = -f$

ECCOMAS 2022, Oslo, June 6, 2022 - C. Lehrenfeld - Unfitted mixed finite element methods

⁷C.D'Angelo, A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM:M2AN, 2012

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite element method for Darcy flow. arXiv: 2205.12023

Literature II/II: No \mathfrak{P} -penalty on *p*-*q*-coupling

For Darcy interface problem:

- **•** $\mathbb{RT}^0 \times \mathbb{P}^0$ (inf-sup-stable pair^{*}) (low order, 2D) ⁷
- **R** $\mathbb{T}/\mathbb{BDM} \times \mathbb{P}^k$, inf-sup-stable pair^{*} + \mathfrak{M} -penalties for divergence ⁸

Find $(u_h, p_h) \in \Sigma_h \times Q_h$, s.t. $(a + \underline{\mathfrak{B}}_u)(u_h, v_h) + (b + \underline{\mathfrak{B}}^*)(v_h, p_h) = g(v_h), \quad \forall v_h \in \Sigma_h,$ $(b + \underline{\mathfrak{A}}^*)(u_h, q_h) = h(q_h), \quad \forall q_h \in Q_h.$

$$\mathfrak{B}^{*}(\mathbf{v}_{h}, \mathbf{q}_{h}) = \mathfrak{B}_{p}(\operatorname{div} \mathbf{v}_{h}, \mathbf{q}_{h}) = \sum_{F \in \mathcal{F}_{h}} \sum_{j=0}^{k} \gamma h^{2j+1} \int_{F} \llbracket D^{j} \operatorname{div} \mathbf{v}_{h} \rrbracket \llbracket D^{j} \mathbf{q}_{h} \rrbracket ds$$

mass balance hardly polluted

(effectively using a smooth ext of f on the active mesh, possibly by patch- \mathfrak{B} -penalties) $f \in \mathbb{P}^k \Rightarrow \operatorname{div} u_h = -f$

Aim now: Robustness w.r.t. cut position (also high order) w/o pollution of mass balance

ECCOMAS 2022, Oslo, June 6, 2022 - C. Lehrenfeld - Unfitted mixed finite element methods

⁷C.D'Angelo, A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM:M2AN, 2012

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite element method for Darcy flow. arXiv: 2205.12023

Find
$$u_h \in \Sigma_h = \mathbb{RT}^k \subset H(\operatorname{div}, \Omega), \ p_h \in Q_h = \operatorname{div} \Sigma_h = \mathbb{P}^k \subset L^2(\Omega), \ \text{s.t.}$$

 $(u_h, v_h)_{\Omega} + (\operatorname{div} v_h, p_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \forall \ q_h \in \Sigma_h,$
 $(\operatorname{div} u_h, q_h)_{\Omega} = h(q_h) = (-f, q_h)_{\Omega} \forall \ v_h \in Q_h.$

Find
$$u_h \in \Sigma_h = \mathbb{RT}^k \subset H(\operatorname{div}, \Omega), \ p_h \in Q_h = \operatorname{div} \Sigma_h = \mathbb{P}^k \subset L^2(\Omega), \ \text{s.t.}$$

 $(u_h, v_h)_{\Omega} + (\operatorname{div} v_h, p_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \forall \ q_h \in \Sigma_h,$
 $(\operatorname{div} u_h, q_h)_{\Omega} = h(q_h) = (-f, q_h)_{\Omega} \forall \ v_h \in Q_h.$

- $\Sigma_h = \Sigma_h^0 \oplus_a \Sigma_h^\perp$ with $\Sigma_h^0 = \ker b = \{u_h \in \Sigma_h \mid \text{div } u_h = 0\}$ and $a(\cdot, \cdot) = (\cdot, \cdot)_{\Omega}$.
- 3 subproblems for 3 unknowns: $(u_h, p_h) \rightsquigarrow (u_h^0, u_h^\perp, p_h)$
 - (1) Determine u_h^0 from $(u_h^0, v_h^0)_{\Omega} = g(v_h^0) \ \forall v_h^0 \in \Sigma_h^0$,
 - (2) Determine u_h^{\perp} from $(\operatorname{div} u_h^{\perp}, q_h)_{\Omega} = h(q_h) \; \forall q_h \in Q_h$,
 - (3) Determine p_h from $(\operatorname{div} v_h^{\perp}, p_h)_{\Omega} = g(v_h^{\perp}) (u_h^{\perp}, v_h^{\perp})_{\Omega} \quad \forall v_h^{\perp} \in \Sigma_h^{\perp}$.

Find
$$u_h \in \Sigma_h = \mathbb{RT}^k \subset H(\operatorname{div}, \Omega), \ p_h \in Q_h = \operatorname{div} \Sigma_h = \mathbb{P}^k \subset L^2(\Omega), \ \text{s.t.}$$

 $(u_h, v_h)_{\Omega} + (\operatorname{div} v_h, p_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \forall \ q_h \in \Sigma_h,$
 $(\operatorname{div} u_h, q_h)_{\Omega} = h(q_h) = (-f, q_h)_{\Omega} \forall \ v_h \in Q_h.$

- $\Sigma_h = \Sigma_h^0 \oplus_a \Sigma_h^\perp$ with $\Sigma_h^0 = \ker b = \{u_h \in \Sigma_h \mid \text{div } u_h = 0\}$ and $a(\cdot, \cdot) = (\cdot, \cdot)_{\Omega}$.
- 3 subproblems for 3 unknowns: $(u_h, p_h) \rightsquigarrow (u_h^0, u_h^\perp, p_h)$
 - (1) Determine u_h^0 from $(u_h^0, v_h^0)_{\Omega} = g(v_h^0) \ \forall v_h^0 \in \Sigma_h^0$,
 - (2) Determine u_h^{\perp} from $(\operatorname{div} u_h^{\perp}, q_h)_{\Omega} = h(q_h) \; \forall q_h \in Q_h$,
 - (3) Determine p_h from $(\operatorname{div} v_h^{\perp}, p_h)_{\Omega} = g(v_h^{\perp}) (u_h^{\perp}, v_h^{\perp})_{\Omega} \forall v_h^{\perp} \in \Sigma_h^{\perp}$.

• Discrete LBB-stability: $\inf_{q_h} \sup_{u_h} \frac{b(u_h, q_h)}{\|u_h\|_{\Sigma} \|q_h\|_Q} \ge c > 0 \implies \text{stability of (2) \& (3)}$

Find
$$u_h \in \Sigma_h = \mathbb{RT}^k \subset H(\operatorname{div}, \Omega), \ p_h \in Q_h = \operatorname{div} \Sigma_h = \mathbb{P}^k \subset L^2(\Omega), \ \text{s.t.}$$

 $(u_h, v_h)_{\Omega} + (\operatorname{div} v_h, p_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \forall \ q_h \in \Sigma_h,$
 $(\operatorname{div} u_h, q_h)_{\Omega} = h(q_h) = (-f, q_h)_{\Omega} \forall \ v_h \in Q_h.$

- $\Sigma_h = \Sigma_h^0 \oplus_a \Sigma_h^\perp$ with $\Sigma_h^0 = \ker b = \{u_h \in \Sigma_h \mid \text{div } u_h = 0\}$ and $a(\cdot, \cdot) = (\cdot, \cdot)_{\Omega}$.
- 3 subproblems for 3 unknowns: $(u_h, p_h) \rightsquigarrow (u_h^0, u_h^\perp, p_h)$
 - (1) Determine u_h^0 from $(u_h^0, v_h^0)_{\Omega} = g(v_h^0) \ \forall v_h^0 \in \Sigma_h^0$,
 - (2) Determine u_h^{\perp} from $(\operatorname{div} u_h^{\perp}, q_h)_{\Omega} = h(q_h) \; \forall q_h \in Q_h$,
 - (3) Determine p_h from $(\operatorname{div} v_h^{\perp}, p_h)_{\Omega} = g(v_h^{\perp}) (u_h^{\perp}, v_h^{\perp})_{\Omega} \forall v_h^{\perp} \in \Sigma_h^{\perp}$.
- Discrete LBB-stability: $\inf_{q_h} \sup_{u_h} \frac{b(u_h, q_h)}{\|u_h\|_{\Sigma} \|q_h\|_Q} \ge c > 0 \implies \text{stability of (2) \& (3)}$
- With div $\Sigma_h \subset Q_h$ (2) also reads as div $u_h + \prod_{Q_h} f = 0$ (pointwise)

Unfitted Mixed FEM

Starting point: straight-forward unfitted Mixed FEM: Find $u_h \in \Sigma_h = \mathbb{RT}^k(\mathcal{T}_h) \subset H(\operatorname{div}, \Omega^{\mathcal{T}}), p_h \in Q_h = \mathbb{P}^k(\mathcal{T}_h) \subset L^2(\Omega^{\mathcal{T}}), \text{ s.t.}$

$$(u_h, v_h)_{\Omega} + (\operatorname{div} v_h, p_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \forall v_h \in \Sigma_h,$$

$$(\operatorname{div} u_h, q_h)_{\Omega} = h(q_h) = (-f, q_h)_{\Omega} \forall q_h \in Q_h.$$

(1) Determine u_h^0 from $a_h(u_h^0, v_h^0) = (u_h^0, v_h^0)_{\Omega} = g(v_h^0) \ \forall v_h^0 \in \Sigma_h^0$

(2) Determine u_h^{\perp} from $b_h(u_h^{\perp}, q_h) = (\text{div } u_h^{\perp}, q_h)_{\Omega} = h(q_h) \ \forall q_h \in Q_h$

(3) Determine p_h from $b_h(v_h^{\perp}, p_h) = (\text{div } v_h^{\perp}, p_h)_{\Omega} = g(v_h^{\perp}) - (u_h^{\perp}, v_h^{\perp})_{\Omega} \forall v_h^{\perp} \in \Sigma_h^{\perp}$

ECCOMAS 2022, Oslo, June 6, 2022 - C. Lehrenfeld - Unfitted mixed finite element methods

Adjusted unfitted mixed FEM

Observation on the subspace Σ_h^0

Due to div $\Sigma_h \subset Q_h$ we have ker b = pointwise divergence-free functions

 $\Rightarrow \Sigma_h^0 = \{u_h \in \Sigma_h \mid b(u_h, q_h) = 0 \ \forall q_h \in Q_h\} = \ker b = \ker b_h \text{ with } b_h(u_h, q_h) := (\operatorname{div} u_h, q_h)_{\Omega}\tau$

Adjusted unfitted mixed FEM

Observation on the subspace Σ_h^0

Due to div $\Sigma_h \subset Q_h$ we have ker b = pointwise divergence-free functions

 $\Rightarrow \Sigma_h^0 = \{u_h \in \Sigma_h \mid b(u_h, q_h) = 0 \ \forall q_h \in Q_h\} = \ker b = \ker b_h \text{ with } b_h(u_h, q_h) := (\operatorname{div} u_h, q_h)_{\Omega}\tau$

Adjusted unfitted Mixed FEM: Find $u_h \in \Sigma_h = \mathbb{RT}^k(\mathcal{T}_h), \ \bar{p}_h \in Q_h = \mathbb{P}^k(\mathcal{T}_h), \ \text{s.t.}$ $(u_h, v_h)_{\Omega} + \gamma_{\mathbb{R}} \otimes (u_h, v_h) + (\operatorname{div} v_h, \ \bar{p}_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \quad \forall \ v_h \in \Sigma_h,$ $(\operatorname{div} u_h, q_h)_{\Omega} = h_h(q_h) = (-f_h, q_h)_{\Omega} \quad \forall \ q_h \in Q_h.$

• $\gamma_{\text{m}} > 0 \ (\gamma_{\text{m}} = 0 \text{ possible})$

• Assume $f_h \in Q_h$ with $f_h \approx \mathcal{E}f$ in $\Omega^{\mathcal{T}}$ (with \mathcal{E} smooth ext. op. from Ω to $\Omega^{\mathcal{E}} \supset \Omega^{\mathcal{T}}$.)

Adjusted unfitted Mixed FEM: Find $u_h \in \Sigma_h = \mathbb{RT}^k(\mathcal{T}_h), \ \bar{p}_h \in Q_h = \mathbb{P}^k(\mathcal{T}_h), \text{ s.t.}$ $(u_h, v_h)_{\Omega} + \gamma_{\mathbb{R}} \mathbb{R}(u_h, v_h) + (\operatorname{div} v_h, \overline{p}_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \quad \forall v_h \in \Sigma_h,$ $(\operatorname{div} u_h, q_h)_{\Omega} = h_h(q_h) = (-f_h, q_h)_{\Omega} \quad \forall q_h \in Q_h.$

Symmetric saddle point problem; well-conditioned linear systems.

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, *A divergence preserving cut finite element method for Darcy flow.* arXiv: 2205.12023 ECCOMAS 2022, Oslo, June 6, 2022 – C. Lehrenfeld – Unfitted mixed finite element methods

Adjusted unfitted Mixed FEM: Find $u_h \in \Sigma_h = \mathbb{RT}^k(\mathcal{T}_h), \ \bar{p}_h \in Q_h = \mathbb{P}^k(\mathcal{T}_h), \text{ s.t.}$ $(u_h, v_h)_{\Omega} + \gamma_{\mathbb{R}} \mathbb{R}(u_h, v_h) + (\operatorname{div} v_h, \overline{p}_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \quad \forall v_h \in \Sigma_h,$ $(\operatorname{div} u_h, q_h)_{\Omega} = h_h(q_h) = (-f_h, q_h)_{\Omega} \quad \forall q_h \in Q_h.$

Symmetric saddle point problem; well-conditioned linear systems.

Subproblems (1) & (2) for $u_h^0 \in \Sigma_h^0$ and $u_h^{\perp} \in \Sigma_h^{\perp}$:

■ $a_h(u_h^0, v_h^0) = (u_h^0, v_h^0)_{\Omega} + \gamma_{*} \mathfrak{A}(u_h^0, v_h^0) = g(v_h^0) = (v_h^0, p_D)_{\partial\Omega} \forall v_h^0 \in \Sigma_h^0$ Consistent, continuous, coercive (w.r.t. $\|\cdot\|_{H(\operatorname{div};\Omega^{\mathcal{T}})}$).

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, *A divergence preserving cut finite element method for Darcy flow.* arXiv: 2205.12023 ECCOMAS 2022, Oslo, June 6, 2022 – C. Lehrenfeld – Unfitted mixed finite element methods

Adjusted unfitted Mixed FEM: Find $u_h \in \Sigma_h = \mathbb{RT}^k(\mathcal{T}_h), \ \bar{p}_h \in Q_h = \mathbb{P}^k(\mathcal{T}_h), \text{ s.t.}$ $(u_h, v_h)_{\Omega} + \gamma_{\mathbb{R}} \mathbb{R}(u_h, v_h) + (\operatorname{div} v_h, \overline{p}_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \quad \forall v_h \in \Sigma_h,$ $(\operatorname{div} u_h, q_h)_{\Omega} = h_h(q_h) = (-f_h, q_h)_{\Omega} \quad \forall q_h \in Q_h.$

Symmetric saddle point problem; well-conditioned linear systems.

Subproblems (1) & (2) for $u_h^0 \in \Sigma_h^0$ and $u_h^{\perp} \in \Sigma_h^{\perp}$:

- $a_h(u_h^0, v_h^0) = (u_h^0, v_h^0)_{\Omega} + \gamma_{\mathbb{A}} \mathfrak{A}(u_h^0, v_h^0) = g(v_h^0) = (v_h^0, p_D)_{\partial\Omega} \forall v_h^0 \in \Sigma_h^0$ Consistent, continuous, coercive (w.r.t. $\|\cdot\|_{H(\operatorname{div};\Omega^{\mathcal{T}})}$).
- $b_h(u_h^{\perp}, q_h) = (\text{div } u_h^{\perp}, q_h)_{\Omega^{\mathcal{T}}} = h_h(q_h) = (-f_h, q_h)_{\Omega^{\mathcal{T}}} \forall q_h \in Q_h$ Consistent (up to $f_h \approx f$), continuous (w.r.t. norms on $\Omega^{\mathcal{T}}$), LBB-stable.

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, *A divergence preserving cut finite element method for Darcy flow.* arXiv: 2205.12023 ECCOMAS 2022, Oslo, June 6, 2022 – C. Lehrenfeld – Unfitted mixed finite element methods

Adjusted unfitted Mixed FEM: Find $u_h \in \Sigma_h = \mathbb{RT}^k(\mathcal{T}_h), \ \bar{p}_h \in Q_h = \mathbb{P}^k(\mathcal{T}_h), \text{ s.t.}$ $(u_h, v_h)_{\Omega} + \gamma_{\mathbb{R}} \mathbb{R}(u_h, v_h) + (\operatorname{div} v_h, \overline{p}_h)_{\Omega} = g(v_h) = (v_h \cdot n, p_D)_{\partial\Omega} \quad \forall v_h \in \Sigma_h,$ $(\operatorname{div} u_h, q_h)_{\Omega} = h_h(q_h) = (-f_h, q_h)_{\Omega} \quad \forall q_h \in Q_h.$

Symmetric saddle point problem; well-conditioned linear systems.

Subproblems (1) & (2) for $u_h^0 \in \Sigma_h^0$ and $u_h^{\perp} \in \Sigma_h^{\perp}$:

- $a_h(u_h^0, v_h^0) = (u_h^0, v_h^0)_{\Omega} + \gamma_{*} \mathfrak{A}(u_h^0, v_h^0) = g(v_h^0) = (v_h^0, p_D)_{\partial\Omega} \forall v_h^0 \in \Sigma_h^0$ Consistent, continuous, coercive (w.r.t. $\|\cdot\|_{H(\operatorname{div};\Omega^{\mathcal{T}})}$).
- $b_h(u_h^{\perp}, q_h) = (\text{div } u_h^{\perp}, q_h)_{\Omega^{\mathcal{T}}} = h_h(q_h) = (-f_h, q_h)_{\Omega^{\mathcal{T}}} \forall q_h \in Q_h$ Consistent (up to $f_h \approx f$), continuous (w.r.t. norms on $\Omega^{\mathcal{T}}$), LBB-stable.

Error estimate for u_h [u_h is the same as in [8] if f_h is a \mathfrak{P} -penalty-based discrete ext. of f] $\|u - u_h\|_{H(\operatorname{div};\Omega^{\mathcal{T}})} \lesssim \|u - \Pi^{\Sigma_h} u\|_{L^2(\Omega^{\mathcal{T}})} + \|\Pi^{Q_h} \mathcal{E}f - f_h\|_{L^2(\Omega^{\mathcal{T}})} \lesssim h^{k+1},$

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, *A divergence preserving cut finite element method for Darcy flow.* arXiv: 2205.12023 ECCOMAS 2022, Oslo, June 6, 2022 – C. Lehrenfeld – Unfitted mixed finite element methods

Lagrange Multiplier \bar{p}_h

Subproblem (3) for $\bar{p}_h \in Q_h$: $b_h(v_h^{\perp}, \bar{p}_h) = (\operatorname{div} v_h^{\perp}, \bar{p}_h)_{\Omega^{\mathcal{T}}} = g(v_h^{\perp}) - (u_h^{\perp}, v_h^{\perp})_{\Omega^{\mathcal{T}}} = (v_h^{\perp} \cdot n, p_D)_{\partial\Omega} - (u_h^{\perp}, v_h^{\perp})_{\Omega^{\mathcal{T}}} \quad \forall v_h^{\perp} \in \Sigma_h^{\perp}$

Lagrange Multiplier \bar{p}_h

Subproblem (3) for $\bar{p}_h \in Q_h$:

 $b_h(v_h^{\perp}, \bar{p}_h) = (\operatorname{div} v_h^{\perp}, \bar{p}_h)_{\Omega^{\mathcal{T}}} = g(v_h^{\perp}) - (u_h^{\perp}, v_h^{\perp})_{\Omega^{\mathcal{T}}} = (v_h^{\perp} \cdot n, p_D)_{\partial\Omega} - (u_h^{\perp}, v_h^{\perp})_{\Omega^{\mathcal{T}}} \forall v_h^{\perp} \in \Sigma_h^{\perp}$

■ inconsistent on cut elements, i.e. $\bar{p}_h \not\approx p$ (part. integration "does not work")

consistent on uncut elements

Lagrange Multiplier $\bar{p}_h \rightsquigarrow p_h^{\star}$

Subproblem (3) for $\bar{p}_h \in Q_h$:

 $b_h(v_h^{\perp},\bar{p}_h) = (\operatorname{div} v_h^{\perp},\bar{p}_h)_{\Omega^{\mathcal{T}}} = g(v_h^{\perp}) - (u_h^{\perp},v_h^{\perp})_{\Omega^{\mathcal{T}}} = (v_h^{\perp} \cdot n, p_D)_{\partial\Omega} - (u_h^{\perp},v_h^{\perp})_{\Omega^{\mathcal{T}}} \,\forall v_h^{\perp} \in \Sigma_h^{\perp}$

- inconsistent on cut elements, i.e. $\bar{p}_h \not\approx p$ (part. integration "does not work")
- consistent on uncut elements
- \rightsquigarrow Replace (3) with a different way to obtain p_h
- Accurate $u_h \in \mathbb{RT}^k \rightsquigarrow$ recover $p_h^* \in Q_h^+ = \mathbb{P}^{k+1}(\mathcal{T}_h)$

Lagrange Multiplier $\bar{p}_h \rightsquigarrow p_h^{\star}$

Subproblem (3) for $\bar{p}_h \in Q_h$:

 $b_h(v_h^{\perp},\bar{p}_h) = (\operatorname{div} v_h^{\perp},\bar{p}_h)_{\Omega^{\mathcal{T}}} = g(v_h^{\perp}) - (u_h^{\perp},v_h^{\perp})_{\Omega^{\mathcal{T}}} = (v_h^{\perp} \cdot n, p_D)_{\partial\Omega} - (u_h^{\perp},v_h^{\perp})_{\Omega^{\mathcal{T}}} \,\forall v_h^{\perp} \in \Sigma_h^{\perp}$

- inconsistent on cut elements, i.e. $\bar{p}_h \not\approx p$ (part. integration "does not work")
- consistent on uncut elements
- \rightsquigarrow Replace (3) with a different way to obtain p_h
- Accurate $u_h \in \mathbb{RT}^k \rightsquigarrow$ recover $p_h^* \in Q_h^+ = \mathbb{P}^{k+1}(\mathcal{T}_h)$

Element-local post-processing:

On each element $T \in \mathcal{T}_h$:

$$\begin{aligned} (\nabla p_h^*, \nabla q_h^*)_{\mathcal{T}} &= (u_h, \nabla q_h^*)_{\mathcal{T}} \qquad \forall q_h^* \in \mathcal{P}^{k+1}(\mathcal{T}) \setminus \mathbb{R}, \\ (p_h^*, 1)_{\mathcal{T}} &= (\bar{p}_h, 1)_{\mathcal{T}} \text{ if } \mathcal{T} \in \mathcal{T}_h \setminus \mathcal{T}_h^{\Gamma}, \\ (p_h^*, 1)_{\mathcal{T} \cap \partial \Omega} &= (p_D, 1)_{\mathcal{T} \cap \partial \Omega} \text{ if } \mathcal{T} \in \mathcal{T}_h^{\Gamma}. \end{aligned}$$

Lagrange Multiplier $\bar{p}_h \rightsquigarrow p_h^{\star}$

Subproblem (3) for $\bar{p}_h \in Q_h$:

 $b_h(v_h^{\perp},\bar{p}_h) = (\operatorname{div} v_h^{\perp},\bar{p}_h)_{\Omega^{\mathcal{T}}} = g(v_h^{\perp}) - (u_h^{\perp},v_h^{\perp})_{\Omega^{\mathcal{T}}} = (v_h^{\perp} \cdot n, p_D)_{\partial\Omega} - (u_h^{\perp},v_h^{\perp})_{\Omega^{\mathcal{T}}} \forall v_h^{\perp} \in \Sigma_h^{\perp}$

- inconsistent on cut elements, i.e. $\bar{p}_h \not\approx p$ (part. integration "does not work")
- consistent on uncut elements
- \rightsquigarrow Replace (3) with a different way to obtain p_h
- Accurate $u_h \in \mathbb{RT}^k \rightsquigarrow$ recover $p_h^* \in Q_h^+ = \mathbb{P}^{k+1}(\mathcal{T}_h)$

Element-local post-processing:

On each element $T \in \mathcal{T}_h$:

$$\begin{aligned} (\nabla p_h^*, \nabla q_h^*)_{\mathcal{T}} &= (u_h, \nabla q_h^*)_{\mathcal{T}} \qquad \forall q_h^* \in \mathcal{P}^{k+1}(\mathcal{T}) \setminus \mathbb{R}, \\ (p_h^*, 1)_{\mathcal{T}} &= (\bar{p}_h, 1)_{\mathcal{T}} \text{ if } \mathcal{T} \in \mathcal{T}_h \setminus \mathcal{T}_h^{\Gamma}, \\ (p_h^*, 1)_{\mathcal{T} \cap \partial \Omega} &= (p_D, 1)_{\mathcal{T} \cap \partial \Omega} \text{ if } \mathcal{T} \in \mathcal{T}_h^{\Gamma}. \end{aligned}$$

Alternative: Patch-local post-processing (preserve mean value on uncut elements)

ECCOMAS 2022, Oslo, June 6, 2022 - C. Lehrenfeld - Unfitted mixed finite element methods

Numerical example: mixed Poisson on a ring, manufactured solution

- $\blacksquare \ \mathbb{RT}^k \times \mathbb{P}^k$
- isoparametric unfitted FEM

- postprocessing involving *p*_D
- uniform refinements

 $\|p_h^{\star}-p\|_{L^2(\Omega)}$

ECCOMAS 2022, Oslo, June 6, 2022 - C. Lehrenfeld - Unfitted mixed finite element methods

 $||u_h - u||_{L^2(\Omega)}$

Neumann boundary conditions: $p = p_D \rightsquigarrow u \cdot n = u_{D,n}$ on $\partial \Omega$

Stabilized Lagrange Multiplier Approach (similar to [9]) Find $u_h \in \Sigma_h = \mathbb{RT}^k(\mathcal{T}_h), \ \bar{p}_h \in Q_h = \mathbb{P}^k(\mathcal{T}_h), \ \lambda_h \in \Lambda_h = \mathbb{P}^k(\mathcal{T}_h^{\Gamma}), \ s.t.$

$$\begin{aligned} (u_h, v_h)_{\Omega} + \gamma_{*} & \mathfrak{B}(u_h, v_h) + \quad (\operatorname{div} v_h, \bar{p}_h)_{\Omega} \tau - \quad (v_h \cdot n, \lambda_h)_{\partial\Omega} = \qquad g(v_h) = 0 \forall \ v_h \in \Sigma_h, \\ (\operatorname{div} u_h, q_h)_{\Omega} \tau & = \qquad (-f_h, q_h)_{\Omega} \tau \forall \ q_h \in Q_h, \\ (u_h \cdot n, \mu_h)_{\partial\Omega} & - \mathfrak{B}_{\lambda}(\lambda_h, \mu_h) = \qquad (u_{D,n}, \mu_h)_{\partial\Omega} \forall \ \mu_h \in \Lambda_h. \end{aligned}$$

■ 𝔐_λ(·, ·):

smoothing type penalties

• + volume gradient stabilization weakly enforcing $abla \lambda_h \cdot n pprox 0$

- $\lambda_h \mu_h$ -block $\mathfrak{M}_{\lambda}(\lambda_h, \mu_h)$ not invertible
- symmetric saddle-point problem
- Mass balance stays "clean" (in the volume).
- Patch-wise postprocessing unaffected.

ECCOMAS 2022, Oslo, June 6, 2022 - C. Lehrenfeld - Unfitted mixed finite element methods

⁸ T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite element method for Darcy flow. arXiv: 2205.12023

⁹E. Burman, Projection Stabilization of Lagrange Multipliersfor the Imposition of Constraints on Interfacesand Boundaries. NMPDE, 2013

Conclusion & Outlook

Unfitted mixed FEM

- Circumvent polluting the mass balance (one of the main features of mixed formulations)
- Exploit pointwise character of constraint
 - to go from div-constraint on Ω to $\Omega^{\mathcal{T}}$ (or to apply $\mathfrak{M}^*(u_h, q_h)$ as in [8])
- Split into 3 subproblems (inconsistency only affects p_h)
- Use post-processing techniques to recover p_h^{\star} (higher order)

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, *A divergence preserving cut finite element method for Darcy flow.* arXiv: 2205.12023 ECCOMAS 2022, Oslo, June 6, 2022 – C. Lehrenfeld – Unfitted mixed finite element methods

Conclusion & Outlook

Unfitted mixed FEM

- Circumvent polluting the mass balance (one of the main features of mixed formulations)
- Exploit pointwise character of constraint
 - to go from div-constraint on Ω to $\Omega^{\mathcal{T}}$ (or to apply $\mathfrak{M}^*(u_h, q_h)$ as in [8])
- Split into 3 subproblems (inconsistency only affects *p_h*)
- Use post-processing techniques to recover p_h^{\star} (higher order)

Extensions

- Analysis Neumann case
- $\gamma_{\pm} = 0$ possible? (-: condition, postprocess.; +: hybridization) / hybridiz. on patches
- ~→ Stokes / Navier-Stokes:
 - velocity space H(div)-conforming (H^1 -non-conforming) \rightsquigarrow exactly div-free
 - $a_h(\cdot, \cdot)$ includes DG terms and \mathfrak{A}_u -penalties
 - $\bullet f = f_h = 0$
 - Dirichlet bnd. correspond to Neumann case (last slide)

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, *A divergence preserving cut finite element method for Darcy flow.* arXiv: 2205.12023 ECCOMAS 2022, Oslo, June 6, 2022 – C. Lehrenfeld – Unfitted mixed finite element methods

Conclusion & Outlook

Unfitted mixed FEM

- Circumvent polluting the mass balance (one of the main features of mixed)
- Exploit pointwise character of constraint
 - to go from div-constraint on Ω to $\Omega^{\mathcal{T}}$
- Split into 3 subproblems (inconsistency only
- Use post-processing techniques to

Extensions

Analysis Me

 $= f_h = 0$

- postprocess.; +: hybridization) / hybridiz. on patches
 - H = H(div)-conforming (H^1 -non-conforming) \rightarrow exactly div-free includes DG terms and 🕮,,-penalties
 - Dirichlet bnd. correspond to Neumann case (last slide)

⁸T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite element method for Darcy flow. arXiv: 2205.12023 ECCOMAS 2022, Oslo, June 6, 2022 – C. Lehrenfeld – Unfitted mixed finite element methods