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Background: Unfitted FEM

Problems

PDEs on domains with separate geometry description (e.g. level set)

PDEs on embedded surfaces

PDEs on moving domains

Challenges
FE formulation in unfitted setting

Stability/robustness for arbitrary (small) cuts

Imposition of boundary/interface conditions

Cut integration (robust / high order accurate)

Γ

Ω1

Ω2

Solution techniques

unfitted FE spaces (CutFEM / XFEM / Finite Cell / Unfitted FEM / ...)

Weak imposition of boundary conditions through Nitsche / stab. Lagrange mult.

Ghost ( ) penalty / aggregated FEM

Assumptions:

we want to do unfitted FEM

we know the ghost penalty mechanism as

one tool to deal with small cut problems:

∥u∥Hq(Ω) + ∥u∥ ,q
≃ ∥u∥Hq(ΩT )

geometry handling is exact
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Examples: Mixed formulation of the Poisson and Stokes problems

Mixed Poisson/Darcy:

Find u, p with p = pD on ∂Ω, s.t.

K−1u− ∇p = 0 in Ω,

div u = −f in Ω.

Stokes:

Find u, p with u = uD on ∂Ω, s.t.

−∆u+ ∇p = f in Ω,

div u = 0 in Ω,

Constraint equation correspond to mass conservation (p is Lagrange multiplier).

General unfitted saddle point problems
Find (u, p) ∈ Σ×Q, s.t. a(u, v) + b(v , p) = g(v), ∀v ∈ Σ,

b(u, q) = h(q), ∀q ∈ Q.

� (inf-sup) stability in the presence of arbitrary cuts ?
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Literature I/II: -penalties on u and p: [neglecting bound. conditions]

Stokes (advantage: H1-conformity) based on stable fitted method:

Stabilized vel./press. pairs1

Taylor-Hood 2,3

Scott-Vogelius (macro-element version, exactly divfree⋆) [+grad-div)]4

Poisson/Darcy and Stokes-Darcy based on stable fitted method:

RTk / BDMk × Pk (inf-sup-stable (in the fitted case) pairs)5,6

Stabilized formulations:

Find (uh, ph) ∈ Σ×Q, s.t. (a(h) + u)(uh, vh) + b(h)(vh, ph) = g(vh), ∀vh ∈ Σh,

b(h)(uh, qh) − (dh+ p)(ph, qh) = h(qh), ∀qh ∈ Qh.

⇝ inf-sup-stability of global bilinear form (independent of cut position) , but mass conservation polluted �

1
A. Massing, M.G. Larson, A. Logg, M.E. Rognes, A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sc. Comp., 2014
2
M. Kirchhart, S. Groß, A. Reusken, Analysis of an XFEM Discretization for Stokes Interface Problems. SISC, 2016
3
J. Guzmán, M. Olshanskii, Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comp., 2018
4
H. Liu, M. Neilan, M. Olshanskii, A CutFEM divergence–free discretization for the Stokes problem. arXiv: 2110.11456
5
R. Puppi, A cut finite element method for the Darcy problem. arXiv: 2111.09922
6
P. Cao, J. Chen, An extended finite element method for coupled Darcy-Stokes problems. IJNME, 2022
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Literature II/II: No -penalty on p-q-coupling [neglecting bound. conditions]

For Darcy interface problem:

RT0 × P0 (inf-sup-stable pair⋆) (low order, 2D) 7

RT/BDM× Pk , inf-sup-stable pair⋆ + -penalties for divergence 8

Find (uh, ph) ∈ Σh ×Qh, s.t. (a + u)(uh, vh) +(b +
∗
)(vh, ph) = g(vh), ∀vh ∈ Σh,

(b +
∗
)(uh, qh) = h(qh), ∀qh ∈ Qh.

∗
(vh, qh) = p(div vh, qh)=

∑
F∈Fh

k∑
j=0

γh2j+1
∫
F
[[D jdivvh]][[D

jqh]]ds

mass balance hardly polluted

(effectively using a smooth ext of f on the active mesh, possibly by patch- -penalties)

f ∈ Pk ⇒ div uh = −f

Aim now: Robustness w.r.t. cut position (also high order) w/o pollution of mass balance

7
C.D’Angelo, A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM:M2AN, 2012
8
T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite element method for Darcy flow. arXiv: 2205.12023
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A step back: Fitted mixed Poisson (recap)

Find uh ∈ Σh = RTk ⊂ H(div,Ω), ph ∈ Qh = div Σh = Pk ⊂ L2(Ω), s.t.
(uh, vh)Ω+ (divvh, ph)Ω = g(vh) = (vh ·n, pD)∂Ω∀ qh ∈ Σh,

(div uh, qh)Ω = h(qh) = (−f , qh)Ω∀ vh ∈ Qh.

Σh = Σ0h ⊕a Σ⊥h with Σ0h = ker b = {uh ∈ Σh | div uh = 0} and a(·, ·) = (·, ·)Ω.
3 subproblems for 3 unknowns: (uh, ph)⇝ (u0h , u

⊥
h , ph)

(1) Determine u0h from (u0h , v
0
h )Ω = g(v 0h ) ∀v 0h ∈ Σ0h,

(2) Determine u⊥h from (div u⊥h , qh)Ω = h(qh) ∀qh ∈ Qh,

(3) Determine ph from (div v⊥h , ph)Ω = g(v⊥h )− (u⊥h , v
⊥
h )Ω ∀v⊥h ∈ Σ⊥h .

Discrete LBB-stability: inf
qh

sup
uh

b(uh, qh)

∥uh∥Σ∥qh∥Q
≥ c > 0 ⇒ stability of (2) & (3)

With div Σh ⊂ Qh (2) also reads as div uh +ΠQh f = 0 (pointwise)
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Unfitted Mixed FEM

Starting point: straight-forward unfitted Mixed FEM:
Find uh ∈ Σh = RTk(Th) ⊂ H(div,ΩT ), ph ∈ Qh = Pk(Th) ⊂ L2(ΩT ), s.t.

(uh, vh)Ω+ (divvh, ph)Ω = g(vh) = (vh ·n, pD)∂Ω∀ vh ∈ Σh,

(div uh, qh)Ω = h(qh) = (−f , qh)Ω∀ qh ∈ Qh.

T ∈ Th \ T Γ
h

T ∈ T Γ
h

Γ = ∂Ω

(1) Determine u0h from ah(u
0
h , v

0
h ) = (u0h , v

0
h )Ω = g(v0h ) ∀v0h ∈ Σ0h

(2) Determine u⊥h from bh(u
⊥
h , qh) = (div u⊥h , qh)Ω = h(qh) ∀qh ∈ Qh

(3) Determine ph from bh(v
⊥
h , ph) = (div v⊥h , ph)Ω = g(v⊥h )− (u⊥h , v

⊥
h )Ω ∀v⊥h ∈ Σ⊥h
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Adjusted unfitted mixed FEM T ∈ Th \ T Γ
h

T ∈ T Γ
h

Γ = ∂Ω

Observation on the subspace Σ0h
Due to div Σh ⊂ Qh we have ker b = pointwise divergence-free functions

⇒ Σ0h = {uh ∈ Σh | b(uh, qh) = 0 ∀qh ∈ Qh} = ker b = ker bh with bh(uh, qh) := (div uh, qh)ΩT

Adjusted unfitted Mixed FEM:
Find uh ∈ Σh = RTk(Th), p̄h ∈ Qh = Pk(Th), s.t.

(uh, vh)Ω + γ (uh, vh)+ (divvh, p̄h)ΩT = g(vh) = (vh ·n, pD)∂Ω ∀ vh ∈ Σh,

(divuh, qh)ΩT = hh(qh) = (−fh, qh)ΩT ∀ qh ∈ Qh.

γ > 0 (γ = 0 possible)

Assume fh ∈ Qh with fh ≈ Ef in ΩT ( with E smooth ext. op. from Ω to ΩE ⊃ ΩT .)
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The subproblems for uh:

Adjusted unfitted Mixed FEM:
Find uh ∈ Σh = RTk(Th), p̄h ∈ Qh = Pk(Th), s.t.

(uh, vh)Ω + γ (uh, vh)+ (divvh, p̄h)ΩT = g(vh) = (vh ·n, pD)∂Ω ∀ vh ∈ Σh,

(divuh, qh)ΩT = hh(qh) = (−fh, qh)ΩT ∀ qh ∈ Qh.

Symmetric saddle point problem; well-conditioned linear systems.

Subproblems (1) & (2) for u0h ∈ Σ0h and u
⊥
h ∈ Σ⊥h :

ah(u
0
h , v

0
h ) = (u0h , v

0
h )Ω + γ (u0h , v

0
h ) = g(v

0
h ) = (v0h , pD)∂Ω ∀v0h ∈ Σ0h

Consistent, continuous, coercive (w.r.t. ∥ · ∥H(div;ΩT )).
bh(u

⊥
h , qh) = (div u⊥h , qh)ΩT = hh(qh) = (−fh, qh)ΩT ∀qh ∈ Qh

Consistent (up to fh ≈ f ), continuous (w.r.t. norms on ΩT ), LBB-stable.

Error estimate for uh [uh is the same as in [8] if fh is a -penalty-based discrete ext. of f ]

∥u − uh∥H(div;ΩT ) ≲ ∥u − ΠΣhu∥L2(ΩT ) + ∥ΠQhEf − fh∥L2(ΩT )≲ hk+1,

8
T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite element method for Darcy flow. arXiv: 2205.12023
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Lagrange Multiplier p̄h

Subproblem (3) for p̄h ∈ Qh:
bh(v

⊥
h , p̄h) = (div v⊥h , p̄h)ΩT = g(v⊥h )− (u⊥h , v

⊥
h )ΩT = (v⊥h ·n, pD)∂Ω − (u⊥h , v

⊥
h )ΩT ∀v⊥h ∈ Σ⊥h

inconsistent on cut elements, i.e. p̄h ̸≈ p (part. integration ”does not work”)
consistent on uncut elements

⇝Replace (3) with a different way to obtain ph

Accurate uh ∈ RTk ⇝ recover p⋆h ∈ Q
+
h = Pk+1(Th)

Element-local post-processing:
On each element T ∈ Th:

(∇p⋆h,∇q⋆h)T = (uh,∇q⋆h)T ∀q⋆h ∈ Pk+1(T ) \ R,
(p⋆h, 1)T = (p̄h, 1)T if T ∈ Th \ ThΓ,

(p⋆h, 1)T∩∂Ω = (pD , 1)T∩∂Ω if T ∈ T Γ
h .

Alternative: Patch-local post-processing (preserve mean value on uncut elements)
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Numerical example: mixed Poisson on a ring, manufactured solution

RTk × Pk

isoparametric unfitted FEM

postprocessing involving pD

uniform refinements
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Neumann boundary conditions: p = pD ⇝ u · n = uD,n on ∂Ω
Stabilized Lagrange Multiplier Approach (similar to [9])

Find uh ∈ Σh = RTk(Th), p̄h ∈ Qh = Pk(Th), λh ∈ Λh = Pk(ThΓ), s.t.

(uh, vh)Ω + γ (uh, vh)+ (divvh, p̄h)ΩT− (vh · n, λh)∂Ω = g(vh) = 0∀ vh ∈ Σh,

(divuh, qh)ΩT = (−fh, qh)ΩT ∀ qh ∈ Qh,
(uh · n, µh)∂Ω − λ(λh, µh) = (uD,n, µh)∂Ω∀ µh ∈ Λh.

λ(·, ·):
smoothing type penalties

+ volume gradient stabilization weakly enforcing ∇λh · n ≈ 0

λh − µh-block λ(λh, µh) not invertible

symmetric saddle-point problem

Mass balance stays ”clean” (in the volume).

Patch-wise postprocessing unaffected.

8
T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite element method for Darcy flow. arXiv: 2205.12023
9
E. Burman, Projection Stabilization of Lagrange Multipliersfor the Imposition of Constraints on Interfacesand Boundaries. NMPDE, 2013
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Conclusion & Outlook

Unfitted mixed FEM

Circumvent polluting the mass balance (one of the main features of mixed formulations)

Exploit pointwise character of constraint

• to go from div-constraint on Ω to ΩT • (or to apply ∗
(uh, qh) as in [8])

Split into 3 subproblems (inconsistency only affects ph)

Use post-processing techniques to recover p⋆h (higher order)

Extensions

Analysis Neumann case

γ = 0 possible? ( : condition, postprocess.; : hybridization) / hybridiz. on patches

⇝ Stokes / Navier-Stokes:
velocity space H(div)-conforming (H1-non-conforming) ⇝ exactly div-free
ah(·, ·) includes DG terms and u-penalties

f = fh = 0
Dirichlet bnd. correspond to Neumann case (last slide)

Tha
nk y
ou f
or y
our
atte
ntio
n!

Tha
nk y
ou f
or y
our
atte
ntio
n!
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