Trefftz-DG for Stokes problems

Christoph Lehrenfeld Igor Voulis (joint work with P. Lederer and P. Stocker) Institute for Numerical and Applied Mathematics, Georg-August University

March 22, 2024, GAMM Annual Meeting 2024, S18

The Stokes problem

 $\Omega \subset \mathbb{R}^d$ with d = 2, 3. Find velocity u and pressure p s.t.

$$-\nu\Delta u + \nabla p = f \quad \text{in } \Omega, \tag{Sa}$$

$$-\operatorname{div} u = g \quad \text{in } \Omega, \tag{Sb}$$

$$u = 0 \quad \text{on } \partial\Omega,$$
 (Sc)

where *f*, *g* are ext. forces/sources and $\nu > 0$ is the dynamic viscosity. Weak formulation of (Sa)–(Sc): Find $(u, p) \in [H_0^1(\Omega)]^d \times L_0^2(\Omega)$, s.t.

$$\int_{\Omega} \nu \nabla u : \nabla v \, dx - \int_{\Omega} \operatorname{div} v \, p \, dx = \int_{\Omega} f \cdot v \, dx \quad \forall v \in [H_0^1(\Omega)]^d,$$

$$- \int_{\Omega} \operatorname{div} u \, q \, dx = \int_{\Omega} g \, q \, dx \quad \forall q \in L_0^2(\Omega),$$
(W)

Standard DG for Stokes

Find $(u_h, p_h) \in \underline{\mathbb{X}_h^k} := [\mathbb{P}^k]^d \times \mathbb{P}^{k-1}/\mathbb{R}$, s.t. $a_h(u_h, v_h) + b_h(v_h, p_h) = (f, v_h)_{\mathcal{T}_h} \qquad \forall v_h \in [\mathbb{P}^k]^d$, (DGa) $b_h(u_h, q_h) = (g, q_h)_{\mathcal{T}_h} \qquad \forall q_h \in \mathbb{P}^{k-1}/\mathbb{R}$, (DGb)

with the bilinear forms

$$\begin{aligned} a_h(u_h, v_h) &:= (\nu \nabla u_h, \nabla v_h)_{\mathcal{T}_h} - (\{\!\!\{\nu \partial_n u_h\}\!\!\}, [\![v_h]\!])_{\mathcal{F}_h} - (\{\!\!\{\nu \partial_n v_h\}\!\!\}, [\![u_h]\!])_{\mathcal{F}_h} \\ &+ \frac{\alpha \nu}{h} ([\![u_h]\!], [\![v_h]\!])_{\mathcal{F}_h}, \\ b_h(v_h, p_h) &:= -(\operatorname{div} v_h, p_h)_{\mathcal{T}_h} + ([\![v_h \cdot n]\!], \{\!\!\{p_h\}\!\!\})_{\mathcal{F}_h}, \end{aligned}$$

where the interior penalty parameter $\alpha = O(k^2)$ is chosen sufficiently large and we used the notation $\partial_n w := \nabla w \cdot n$ (and std. notation for avg. and jumps).

Idea Trefftz (in a nutshell):

- Take your DG formulation and replace the polynomial spaces by Trefftz spaces.
- Trefftz spaces are spaces of functions that satisfy the PDE in the interior exactly (not considering boundary / element interface conditions), i.e.
 - harmonic polynomials for the Laplace equation,
 - plane waves for the Helmholtz equation,
 - etc.
- Exact solutions are in general hard to find,

but approximate solutions can be constructed (Quasi-Trefftz / Weak Trefftz)

$$\mathbb{T}_{f,g}^k(\mathcal{T}_h) := \{ (u_h, p_h) \in \mathbb{X}_h^k \mid -\Delta u_h + \nabla p_h = \Pi^{k-2} f, -\operatorname{div} u_h = \Pi^{k-1} g \},$$
(T)

$$\mathbb{T}_{f,g}^k(\mathcal{T}_h) := \{ (u_h, p_h) \in \mathbb{X}_h^k \mid -\Delta u_h + \nabla p_h = \Pi^{k-2} f, -\operatorname{div} u_h = \Pi^{k-1} g \},$$
(T)

Only affine linear. Decompose into

 $\mathbb{T}^k = \mathbb{T}^k(\mathcal{T}_h) = \mathbb{T}^k_{0,0}(\mathcal{T}_h)$ and a particular solution $(u_{h,p}, p_{h,p}) \in \mathbb{T}^k_{f,g}(\mathcal{T}_h).$

$$\mathbb{T}_{f,g}^k(\mathcal{T}_h) := \{ (u_h, p_h) \in \mathbb{X}_h^k \mid -\Delta u_h + \nabla p_h = \Pi^{k-2} f, -\operatorname{div} u_h = \Pi^{k-1} g \},$$
(T)

Only affine linear. Decompose into

 $\mathbb{T}^k = \mathbb{T}^k(\mathcal{T}_h) = \mathbb{T}^k_{0,0}(\mathcal{T}_h)$ and a particular solution $(u_{h,p}, p_{h,p}) \in \mathbb{T}^k_{f,g}(\mathcal{T}_h).$

Find $(u_h, p_h) \in \mathbb{T}_{f,g} = \mathbb{T} + (u_{h,p}, p_{h,p})$ such that $\forall (v_h, q_h) \in \mathbb{T}$

 $K_h((u_h, p_h), (v_h, q_h)) \coloneqq a_h(u_h, v_h) + b_h(v_h, p_h) + b_h(u_h, q_h) = (f, v_h)_{\mathcal{T}_h} + (g, q_h)_{\mathcal{T}_h}.$ (T-DG)

$$\mathbb{T}_{f,g}^k(\mathcal{T}_h) := \{ (u_h, p_h) \in \mathbb{X}_h^k \mid -\Delta u_h + \nabla p_h = \Pi^{k-2} f, -\operatorname{div} u_h = \Pi^{k-1} g \},$$
(T)

Only affine linear. Decompose into

 $\mathbb{T}^k = \mathbb{T}^k(\mathcal{T}_h) = \mathbb{T}^k_{0,0}(\mathcal{T}_h)$ and a particular solution $(u_{h,p}, p_{h,p}) \in \mathbb{T}^k_{f,g}(\mathcal{T}_h).$

Find $(u_h, p_h) \in \mathbb{T}_{f,g} = \mathbb{T} + (u_{h,p}, p_{h,p})$ such that $\forall (v_h, q_h) \in \mathbb{T}$

$$K_{h}((u_{h}, p_{h}), (v_{h}, q_{h})) \coloneqq a_{h}(u_{h}, v_{h}) + b_{h}(v_{h}, p_{h}) + b_{h}(u_{h}, q_{h}) = (f, v_{h})_{\mathcal{T}_{h}} + (g, q_{h})_{\mathcal{T}_{h}}.$$
 (T-DG)

A few questions:

- Does a particular solution always exist?
- How to compute it?
- How much do we gain from $\mathbb{X}_h^k = [\mathbb{P}^k]^d \times \mathbb{P}^{k-1} \rightsquigarrow \mathbb{T}^k$?

4/14

Example basis functions (k = 2)

Lemma

The pointwise Stokes operator $\mathcal{L} : [\mathcal{P}^{k}(T)]^{d} \times \mathcal{P}^{k-1}(T) \to [\mathcal{P}^{k-2}(T)]^{d} \times \mathcal{P}^{k-1}(T)$, $(v, q) \mapsto (-\Delta v + \nabla p, -\operatorname{div} v)$ is surjective and the local Trefftz space on an element $T \in \mathcal{T}_{h}$ has

$$\dim(\mathbb{T}(\mathcal{T})) = \dim(\mathbb{X}_h(\mathcal{T})) - \dim([\mathcal{P}^{k-2}]^d) - \dim(\mathcal{P}^{k-1}) = d\left(\binom{k+d}{d} - \binom{k-2+d}{d}\right).$$

	<i>d</i> = 2	d = 3
$\frac{\dim \mathbb{X}_h(T)}{\dim \mathbb{T}(T)}$	$\frac{\frac{3}{2}k^2 + \frac{7}{2}k + 2}{4k+2}$	$\frac{\frac{2}{3}k^3 + \frac{7}{2}k^2 + \frac{35}{6}k + 3}{3k^2 + 6k + 3}$

Dimensions of the local finite element spaces $\mathbb{X}_h(T)$ and $\mathbb{T}(T)$.

Implemenation (element-by-element; embedded Trefftz DG)

Let $(\phi_i, \psi_i) \in \mathbb{X}_h(\mathcal{T}_h)$ be basis functions of $\mathbb{X}_h(\mathcal{T}_h)$. Matrix **W** (block-diag.) to Stokes operator:

$$(\mathbf{W})_{ij} = (-\Delta \phi_j + \nabla \psi_j, \tilde{\phi}_i)_{\mathcal{T}_h} + (\operatorname{div} \phi_j, \tilde{\psi}_i)_{\mathcal{T}_h},$$

for basis functions $(\tilde{\phi}_i, \tilde{\psi}_i) \in [\mathbb{P}^{k-2}(\mathcal{T}_h)]^d \times \mathbb{P}^{k-1}(\mathcal{T}_h).$

¹A Stokes Trefftz basis can also be give explicitely

Implemenation (element-by-element; embedded Trefftz DG)

Let $(\phi_i, \psi_i) \in \mathbb{X}_h(\mathcal{T}_h)$ be basis functions of $\mathbb{X}_h(\mathcal{T}_h)$. Matrix **W** (block-diag.) to Stokes operator:

$$(\mathbf{W})_{ij} = (-\Delta \phi_j + \nabla \psi_j, \tilde{\phi}_i)_{\mathcal{T}_h} + (\operatorname{div} \phi_j, \tilde{\psi}_i)_{\mathcal{T}_h},$$

for basis functions $(\tilde{\phi}_i, \tilde{\psi}_i) \in [\mathbb{P}^{k-2}(\mathcal{T}_h)]^d \times \mathbb{P}^{k-1}(\mathcal{T}_h)$.

¹A Stokes Trefftz basis can also be give explicitely

Implemenation (element-by-element; embedded Trefftz DG)

Let $(\phi_i, \psi_i) \in \mathbb{X}_h(\mathcal{T}_h)$ be basis functions of $\mathbb{X}_h(\mathcal{T}_h)$. Matrix **W** (block-diag.) to Stokes operator:

$$(\mathbf{W})_{ij} = (-\Delta \phi_j + \nabla \psi_j, \tilde{\phi}_i)_{\mathcal{T}_h} + (\operatorname{div} \phi_j, \tilde{\psi}_i)_{\mathcal{T}_h},$$

for basis functions $(\tilde{\phi}_i, \tilde{\psi}_i) \in [\mathbb{P}^{k-2}(\mathcal{T}_h)]^d \times \mathbb{P}^{k-1}(\mathcal{T}_h)$.

¹A Stokes Trefftz basis can also be give explicitely

March 22, 2024, GAMM Annual Meeting 2024, S18

Implemenation (embedded Trefftz DG; particular solutions)

<u>Particular solution</u>: For $\mathbf{F}_i = (f, \tilde{\phi}_i)_{\mathcal{T}_h} + (g, \tilde{\psi}_i)_{\mathcal{T}_h}$ we can compute $(u_{h,\rho}, p_{h,\rho})$:

$$\mathbf{W} \cdot \mathbf{u}_{p} = \mathbf{F}$$
 (e.g. $\mathbf{u}_{p} = \mathbf{W}^{\dagger} \mathbf{F}$), $(u_{h,p}, p_{h,p}) = \sum_{i} \mathbf{u}_{p,i}(\phi_{i}, \psi_{i})$.

The role of the pressure in the (homogeneous) Trefftz space

On T we have ∇p = νΔu, i.e. the pressure is determined by the velocity up to a constant (per element). Higher order pressure is determined by velocity.

9/14

The role of the pressure in the (homogeneous) Trefftz space

- On T we have ∇p = νΔu, i.e. the pressure is determined by the velocity up to a constant (per element). Higher order pressure is determined by velocity.
- On *T* we have div *u* = 0 so that we don't need the pressure as Lagrange multiplier for the divergence constraint within each element.

The role of the pressure in the (homogeneous) Trefftz space

- On T we have ∇p = νΔu, i.e. the pressure is determined by the velocity up to a constant (per element). Higher order pressure is determined by velocity.
- On T we have div *u* = 0 so that we don't need the pressure as Lagrange multiplier for the divergence constraint within each element.
- However, we need the (piecewise constant) pressure as Lagrange multiplier for the mass balance / divergence constraint across the element interfaces.

$$b_h(v_h, p_h) := \underbrace{-(\operatorname{div} v_h, p_h)_{\mathcal{T}_h}}_{=0} + (\llbracket v_h \cdot n \rrbracket, \llbracket p_h \rrbracket)_{\mathcal{F}_h}, \quad \text{for } (v_h, q_h) \in \mathbb{T}.$$

Theorem (Inf-Sup stability of $K_h(\cdot, \cdot)$)

For $(v_h, q_h) \in \mathbb{T}$ there holds

$$\sup_{(u_h, p_h) \in \mathbb{T}} \frac{K_h((u_h, p_h), (v_h, q_h))}{\|(u_h, p_h)\|_{\mathbb{T}}} \ge c_{\mathbb{T}} \|(v_h, q_h)\|_{\mathbb{T}}$$
(IS)

for constant $c_{\mathbb{T}}$ independent of h, k and ν and hence the Trefftz-DG problems (T-DG) admits a unique solution that depends continuously on the data.²

Proof (sketch):

- Saddle point problem with piecew. constant pressures \mathbb{P}^0 the Lag. multipliers.
- Inf-sup stability follows from $\mathbb{BDM}^1\times\mathbb{P}^0\subset\mathbb{T}$
- (Kernel-)coercivity as usual.

²The \mathbb{T} -norms are usual DG-type norms.

Lemma (Céa)

Let $(u, p) \in [H^2(\mathcal{T}_h)]^d \times H^1(\mathcal{T}_h)/\mathbb{R}$ be the solution of the Stokes problem (W) and $(u_h, p_h) \in \mathbb{T}_{f,g}$ be the discrete solution to (T-DG). Then, there holds

$$\|(u_h - u, p_h - p)\|_{\mathbb{T}} \lesssim \inf_{(v_h, q_h) \in \mathbb{T}_{f,g}} \|(u - v_h, p - q_h)\|_{\mathbb{T}}$$
(C)

Lemma (Céa)

Let $(u, p) \in [H^2(\mathcal{T}_h)]^d \times H^1(\mathcal{T}_h)/\mathbb{R}$ be the solution of the Stokes problem (W) and $(u_h, p_h) \in \mathbb{T}_{f,g}$ be the discrete solution to (T-DG). Then, there holds

$$\|(u_h - u, p_h - p)\|_{\mathbb{T}} \lesssim \inf_{(v_h, q_h) \in \mathbb{T}_{f,g}} \|(u - v_h, p - q_h)\|_{\mathbb{T}}$$
(C)

Lemma (Approximation)

Let $(u, p) \in [H^{k+1}(\mathcal{T}_h)]^d \cap [H^1(\Omega)]^d \times H^k(\mathcal{T}_h)/\mathbb{R}$ be the solution of the Stokes problem. There holds

$$\inf_{(v_h,q_h)\in\mathbb{T}_{f,g}} \|(u-v_h,p-q_h)\|_{\mathbb{T}} \lesssim \nu^{\frac{1}{2}} h^k |u|_{H^{k+1}(\mathcal{T}_h)} + \nu^{-\frac{1}{2}} h^k |p|_{H^k(\mathcal{T}_h)}.$$
 (A)

11/14

Lemma (Céa)

Let $(u, p) \in [H^2(\mathcal{T}_h)]^d \times H^1(\mathcal{T}_h)/\mathbb{R}$ be the solution of the Stokes problem (W) and $(u_h, p_h) \in \mathbb{T}_{f,g}$ be the discrete solution to (T-DG). Then, there holds

$$\|(u_h - u, p_h - p)\|_{\mathbb{T}} \lesssim \inf_{(v_h, q_h) \in \mathbb{T}_{f,g}} \|(u - v_h, p - q_h)\|_{\mathbb{T}}$$
(C)

Lemma (Approximation)

Let $(u, p) \in [H^{k+1}(\mathcal{T}_h)]^d \cap [H^1(\Omega)]^d \times H^k(\mathcal{T}_h)/\mathbb{R}$ be the solution of the Stokes problem. There holds

$$\inf_{(v_h,q_h)\in\mathbb{T}_{f,g}} \|(u-v_h,p-q_h)\|_{\mathbb{T}} \lesssim \nu^{\frac{1}{2}} h^k |u|_{H^{k+1}(\mathcal{T}_h)} + \nu^{-\frac{1}{2}} h^k |p|_{H^k(\mathcal{T}_h)}.$$
 (A)

\rightsquigarrow We recover the usual DG convergence rates.

March 22, 2024, GAMM Annual Meeting 2024, S18

Numerical example (2D)

March 22, 2024, GAMM Annual Meeting 2024, S18

Numerical example (3D)

Thank you for your attention!

Further details:

Philip L. Lederer, Christoph Lehrenfeld, and Paul Stocker. Trefftz discontinuous Galerkin discretization for the Stokes problem. arXiv preprint arxiv:2306.14600, 2023, accepted for publication in Numerische Mathematik, 2024.

Ongoing work:

- Pressure robust variants
- Variants with (partial) continuity of the velocity
- Extension to Navier-Stokes (non-linear, time-dependent, ...)

14/14