The Trefftz approach for unfitted finite element methods

joint work with Fabian Heimann¹, Erik Schlesinger², Paul Stocker³, Henry v. Wahl⁴ ¹UCL London, ²University of Göttingen, ³University of Vienna, ⁴University of Jena

May 14, 2024

Contemporary Challenges in Trefftz Methods, from Theory to Applications

Banff International Research Station for Mathematical Innovation and Discovery

The Trefftz approach for unfitted finite element methods

Motivation: Unfitted FEM

💡 Idea of unfitted discretizations:

It can be beneficial to separate geometry and mesh for

- time-dependent geometries (avoiding remeshing)
- avoiding (non-trivial) meshing

Motivation: Unfitted FEM

💡 Idea of unfitted discretizations:

It can be beneficial to separate geometry and mesh for

- time-dependent geometries (avoiding remeshing)
- avoiding (non-trivial) meshing

Challenges in unfitted finite elements:

- arbitrary small cuts cause stability issues.
- implementation of unfitted boundary conditions
- geometry description
- cut integration
- time integration
- linear solvers, ...

Motivation: Unfitted FEM

💡 Idea of unfitted discretizations:

It can be beneficial to separate geometry and mesh for

- time-dependent geometries (avoiding remeshing)
- avoiding (non-trivial) meshing

Challenges in unfitted finite elements:

- arbitrary small cuts cause stability issues.
- implementation of unfitted boundary conditions
- geometry description
- cut integration
- time integration
- linear solvers, ...

Problem classes:

 one-domain problems (fictitious domain)
 interface problems

2 surface PDEs

Example problem: Poisson equation on an unfitted mesh

Consider

$$-\Delta u = f \qquad \text{in } \Omega,$$
$$u = g \qquad \text{on } \Gamma = \partial \Omega.$$

as prototypical elliptic problem on an unfitted mesh.

Setting:

- Geometry description independent of the mesh
- \mathcal{T}_h : active submesh with cut elements.
- FE space based on \mathcal{T}_h

Example problem: Poisson equation on an unfitted mesh

Consider

$$-\Delta u = f \qquad \text{in } \Omega,$$
$$u = g \qquad \text{on } \Gamma = \partial \Omega.$$

as prototypical elliptic problem on an unfitted mesh.

Setting:

- Geometry description independent of the mesh
- \mathcal{T}_h : active submesh with cut elements.
- FE space based on \mathcal{T}_h

Starting point:

- discontinuous Galerkin discretisation (Trefftz later)
- weak imposition of boundary conditions through Nitsche

Level set geometry on an unfitted mesh with active elements marked

Unfitted DG discretisation (symmetric interior penalty)

Find $u_h \in \mathbb{P}^k(\mathcal{T}_h)$, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$.

$$a_{h}(u, v) = \sum_{K} \int_{K \cap \Omega} \nabla u \, \nabla v dx + \int_{K \cap \Gamma} \underbrace{-\mathbf{n} \cdot \nabla u \, v}_{-\mathbf{n} \cdot \nabla u \, v} \underbrace{-u \, \mathbf{n} \cdot \nabla v}_{-u \, \mathbf{n} \cdot \nabla v} \underbrace{+\lambda k^{2} h^{-1} u \, v}_{+\lambda k^{2} h^{-1} u \, v} ds$$
$$+ \sum_{F} \int_{F \cap \Omega} -\{\{\mathbf{n}_{F} \cdot \nabla u\}\} [\![v]\!] -\{\{\mathbf{n}_{F} \cdot \nabla v\}\} [\![u]\!] + \lambda k^{2} h^{-1} [\![u]\!] [\![v]\!] ds$$
$$\ell_{h}(v) = \sum_{K} \int_{K \cap \Omega} f v dx + \int_{K \cap \Gamma} -g \, \mathbf{n} \cdot \nabla v + \lambda k^{2} h^{-1} g \, v ds$$

 $\{\!\!\{\cdot\}\!\!\}$: average across facet, $[\![\cdot]\!]$: jump across facet \rightsquigarrow communication between facets.

Unfitted DG discretisation (symmetric interior penalty)

Find $u_h \in \mathbb{P}^k(\mathcal{T}_h)$, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$.

$$a_{h}(u, v) = \sum_{K} \int_{K \cap \Omega} \nabla u \, \nabla v dx + \int_{K \cap \Gamma} \underbrace{-\mathbf{n} \cdot \nabla u \, v}_{-\mathbf{n} \cdot \nabla u \, v} \underbrace{-u \, \mathbf{n} \cdot \nabla v}_{-u \, \mathbf{n} \cdot \nabla v} \underbrace{+\lambda k^{2} h^{-1} u \, v}_{+\lambda k^{2} h^{-1} u \, v} ds$$
$$+ \sum_{F} \int_{F \cap \Omega} -\{\{\mathbf{n}_{F} \cdot \nabla u\}\} [\![v]\!] -\{\{\mathbf{n}_{F} \cdot \nabla v\}\} [\![u]\!] + \lambda k^{2} h^{-1} [\![u]\!] [\![v]\!] ds$$
$$\ell_{h}(v) = \sum_{K} \int_{K \cap \Omega} f v dx + \int_{K \cap \Gamma} -g \, \mathbf{n} \cdot \nabla v + \lambda k^{2} h^{-1} g \, v ds$$

 $\{\!\!\{\cdot\}\!\!\}$: average across facet, $[\![\cdot]\!]$: jump across facet \rightsquigarrow communication between facets.

This is IP method on the shape-irregular trimmed mesh $\{K \cap \Omega\}_{K \in \mathcal{T}_h}$

Unfitted DG discretisation (symmetric interior penalty)

Find $u_h \in \mathbb{P}^k(\mathcal{T}_h)$, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$.

$$a_{h}(u, v) = \sum_{K} \int_{K \cap \Omega} \nabla u \, \nabla v dx + \int_{K \cap \Gamma} \underbrace{-\mathbf{n} \cdot \nabla u \, v}_{-\mathbf{n} \cdot \nabla u \, v} \underbrace{-u \, \mathbf{n} \cdot \nabla v}_{-\mathbf{n} \cdot \nabla v} \underbrace{+\lambda k^{2} h^{-1} u \, v}_{+\lambda k^{2} h^{-1} u \, v} ds$$
$$+ \sum_{F} \int_{F \cap \Omega} -\{\{\mathbf{n}_{F} \cdot \nabla u\}\} [\![v]\!] -\{\{\mathbf{n}_{F} \cdot \nabla v\}\} [\![u]\!] + \lambda k^{2} h^{-1} [\![u]\!] [\![v]\!] ds$$
$$\ell_{h}(v) = \sum_{K} \int_{K \cap \Omega} f v dx + \int_{K \cap \Gamma} -g \, \mathbf{n} \cdot \nabla v + \lambda k^{2} h^{-1} g \, v ds$$

 $\{\!\!\{\cdot\}\!\!\}$: average across facet, $[\![\cdot]\!]$: jump across facet \rightsquigarrow communication between facets.

This is IP method on the shape-irregular trimmed mesh $\{K \cap \Omega\}_{K \in \mathcal{T}_h} \rightsquigarrow$ unstable

Unfitted DG discretisation (symmetric interior penalty) Find $u_h \in \mathbb{P}^k(\mathcal{T}_h)$, s.t. $a_h(u_h, v_h) + \mathfrak{V}_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$.

$$a_{h}(u, v) = \sum_{K} \int_{K \cap \Omega} \nabla u \, \nabla v dx + \int_{K \cap \Gamma} \underbrace{-\mathbf{n} \cdot \nabla u \, v}_{-\mathbf{n} \cdot \nabla u \, v} \underbrace{-u \, \mathbf{n} \cdot \nabla v}_{-u \, \mathbf{n} \cdot \nabla v} \underbrace{+\lambda k^{2} h^{-1} u \, v}_{+\lambda k^{2} h^{-1} u \, v} ds$$
$$+ \sum_{F} \int_{F \cap \Omega} -\{\{\mathbf{n}_{F} \cdot \nabla u\}\} [\![v]\!] -\{\{\mathbf{n}_{F} \cdot \nabla v\}\} [\![u]\!] + \lambda k^{2} h^{-1} [\![u]\!] [\![v]\!] ds$$
$$\ell_{h}(v) = \sum_{K} \int_{K \cap \Omega} fv dx + \int_{K \cap \Gamma} -g \, \mathbf{n} \cdot \nabla v + \lambda k^{2} h^{-1} g \, v ds$$

 $\{\!\!\{\cdot\}\!\!\}$: average across facet, $[\![\cdot]\!]$: jump across facet \rightsquigarrow communication between facets.

This is IP method on the shape-irregular trimmed mesh $\{K \cap \Omega\}_{K \in \mathcal{T}_h} \rightsquigarrow$ unstable

Add ghost penalty () stabilization or repair mesh by cell merging.

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 3/19

Direct version of the *penalty* operator:

$$\mathfrak{V}_{h}(u,v) = \sum_{F \in \mathcal{F}_{h}^{\mathfrak{V}}} \frac{\gamma_{\mathfrak{V}}}{h^{2}} \int_{\omega_{F}} \llbracket u \rrbracket_{\omega_{F}} \llbracket v \rrbracket_{\omega_{F}} dx$$

Here $\llbracket u \rrbracket_{\omega_F} := u_1 - u_2$ with $u_i = \mathcal{E}u |_{T_i}$, $\mathcal{E} : \mathbb{P}^m(\mathcal{K}) \to \mathbb{P}^m(\mathbb{R}^d)$: canonical pol. ext. to \mathbb{R}^d .

This gives us the crucial property

$$\|v\|_{T_1}^2 \lesssim \|v\|_{T_2}^2 + h^2 \mathfrak{V}_h^F(v,v).$$

Direct version of the *penalty* operator:

$$\mathfrak{V}_{h}(u,v) = \sum_{F \in \mathcal{F}_{h}} \frac{\gamma_{\mathfrak{V}}}{h^{2}} \int_{\omega_{F}} \llbracket u \rrbracket_{\omega_{F}} \llbracket v \rrbracket_{\omega_{F}} dx$$

Here $\llbracket u \rrbracket_{\omega_F} := u_1 - u_2$ with $u_i = \mathcal{E}u |_{T_i}$, $\mathcal{E} : \mathbb{P}^m(\mathcal{K}) \to \mathbb{P}^m(\mathbb{R}^d)$: canonical pol. ext. to \mathbb{R}^d .

This gives us the crucial property

$$\|v\|_{T_1}^2 \lesssim \|v\|_{T_2}^2 + h^2 \overset{F}{=} {}^F_h(v,v).$$

We can borrow stability from neighbouring elements

Direct version of the *penalty* operator:

$$\mathfrak{V}_{h}(u,v) = \sum_{F \in \mathcal{F}_{h}^{\mathfrak{V}}} \frac{\gamma_{\mathfrak{V}}}{h^{2}} \int_{\omega_{F}} \llbracket u \rrbracket_{\omega_{F}} \llbracket v \rrbracket_{\omega_{F}} dx$$

Here $\llbracket u \rrbracket_{\omega_F} := u_1 - u_2$ with $u_i = \mathcal{E}u |_{T_i}$, $\mathcal{E} : \mathbb{P}^m(\mathcal{K}) \to \mathbb{P}^m(\mathbb{R}^d)$: canonical pol. ext. to \mathbb{R}^d .

This gives us the crucial property

$$\|v\|_{T_1}^2 \lesssim \|v\|_{T_2}^2 + h^2 \mathfrak{V}_h^F(v,v).$$

- We can borrow stability from neighbouring elements
- This couples all element dofs in a facet patch (\neq doesn't harmonizes with HDG \neq)

Direct version of the *penalty* operator:

$$\mathfrak{V}_{h}(u,v) = \sum_{F \in \mathcal{F}_{h}^{\mathfrak{V}}} \frac{\gamma_{\mathfrak{V}}}{h^{2}} \int_{\omega_{F}} \llbracket u \rrbracket_{\omega_{F}} \llbracket v \rrbracket_{\omega_{F}} dx$$

Here $\llbracket u \rrbracket_{\omega_{\mathcal{F}}} := u_1 - u_2$ with $u_i = \mathcal{E}u|_{T_i}$, $\mathcal{E} : \mathbb{P}^m(\mathcal{K}) \to \mathbb{P}^m(\mathbb{R}^d)$: canonical pol. ext. to \mathbb{R}^d .

This gives us the crucial property

$$\|v\|_{T_1}^2 \lesssim \|v\|_{T_2}^2 + h^2 \mathfrak{V}_h^F(v,v).$$

- We can borrow stability from neighbouring elements
- This couples all element dofs in a facet patch (\neq doesn't harmonizes with HDG \neq)
- Other versions of the stabilisation are possible.

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 4/19

Direct version of the *penalty* operator:

$$\mathfrak{V}_{h}(u,v) = \sum_{F \in \mathcal{F}_{h}^{\mathfrak{V}}} \frac{\gamma_{\mathfrak{V}}}{h^{2}} \int_{\omega_{F}} \llbracket u \rrbracket_{\omega_{F}} \llbracket v \rrbracket_{\omega_{F}} dx$$

Here $\llbracket u \rrbracket_{\omega_{\mathcal{F}}} := u_1 - u_2$ with $u_i = \mathcal{E}u|_{T_i}$, $\mathcal{E} : \mathbb{P}^m(\mathcal{K}) \to \mathbb{P}^m(\mathbb{R}^d)$: canonical pol. ext. to \mathbb{R}^d .

This gives us the crucial property

$$\|v\|_{T_1}^2 \lesssim \|v\|_{T_2}^2 + h^2 \mathfrak{V}_h^F(v,v).$$

- We can borrow stability from neighbouring elements
- This couples all element dofs in a facet patch (\neq doesn't harmonizes with HDG \neq)
- Other versions of the stabilisation are possible.

How to choose $\mathcal{F}_h^{\textcircled{*}}$?

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 4/19

Stabilization facets \mathcal{F}_h^* for the $\begin{tabular}{ll} \Psi \end{array}$ penalty

Form patches that allow to reach one good element from every (ill-)cut element.

GA

Unfitted (embedded) Trefftz DG

Find $u_h \in \mathbb{T}_f^k(\mathcal{T}_h)$, s.t. $a_h(u_h, v_h) + \mathfrak{V}_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{T}_0^k(\mathcal{T}_h) \text{ with}$ $\mathbb{T}_f^k(\mathcal{T}_h) := \{v_h \in \mathbb{P}^k(\mathcal{T}_h) : -\Delta v_h = \Pi^{k-2}f \text{ on } K \text{ for all } K \in \mathcal{T}_h\}.$

- Complexity reduction similar to Hybrid DG: $\mathcal{O}(h^{-d}k^d) \rightarrow \mathcal{O}(h^{-d}k^{d-1})$
- Coupling pattern (element-to-element) compatible with 👻 penalty.

GA

Recovering the DG error estimates

Lemma (H^1 Estimate) $u \in H^m(\Omega)$ exact solution with $g \in H^{\frac{1}{2}}(\Gamma)$, $f \in L^2(\Omega)$, $u_h \in \mathbb{T}_f^k(\mathcal{T}_h)$ Trefftz solution. Then, $|||u - u_h||_{\mathcal{A}_h} + |u_h|_{\mathfrak{S}_h} \lesssim h^l ||u||_{H^{l+1}(\Omega)}, \qquad l = \min\{m - 1, k\}.$

Theorem (L^2 Estimate)

Additionally, assume $L^2(\Omega)$ - $H^1(\Omega)$ -regularity. Then

$$||u - u_h||_{\Omega} \lesssim h^{l+1} ||u||_{H^{l+1}(\Omega)}, \qquad l = \min\{m - 1, k\}.$$

Proofs follow 'standard' unfitted + 'standard' Trefftz DG methodology:

- \blacksquare Coercivity for sufficiently large $\gamma_{\textcircled{\sc op}}$ and λ
- (patchwise) averaged Taylor polynomial as interpolant of the extended solution (on \mathcal{T}_h)
- Appropriate bound on ghost-penalty contribution.

A few variants

Element aggregation: $\gamma_{\oplus} \rightarrow \infty$ (patch-wise $\forall penalty$) \rightsquigarrow patchwise harmonic polynomials.

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 8/19

Embedded Trefftz²: Extracting harmonic & aggregated polynomials

Compute patchwise kernel of

$$w_h^{\omega}(u,v) = \sum_{K \in \omega} h^2(\Delta u, \Delta v)_K + \mathfrak{V}_h^{\omega}(u,v)$$

А

 $\ker(w_h^{\omega})$: harmonic functions that are one polynomial on ω .

Embedded Trefftz²: Extracting harmonic & aggregated polynomials

Compute patchwise kernel of

$$w_h^{\omega}(u,v) = \sum_{K \in \omega} h^2(\Delta u, \Delta v)_K + \mathfrak{V}_h^{\omega}(u,v)$$

 $\operatorname{ker}(w_h^{\omega})$: harmonic functions that are one polynomial on ω .

Setup reduces to:

- Setup linear system for unstabilized (w.r.t. cuts) $\mathbb{P}^{k}(\mathcal{T}_{h})$ discretization
- Setup embedded matrix T corresponding to ker (w_h^{ω})
- Setup reduced system $(T^T A T \text{ and } T^T b)$
- Solve for aggregated Trefftz DG basis
- Reconstruct solution in $\mathbb{P}^k(\mathcal{T}_h)$

Steps can also be patch-localized (to avoid the global DG assembly).

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 9/19

GA

Reference

Right: DG solution; Left: Trefftz DG solution

F. Heimann, C. Lehrenfeld, P. Stocker, H. von Wahl. Unfitted Trefftz discontinuous Galerkin methods for elliptic boundary value problems. ESAIM:M2AN 57(5):2803–2833, 2023.

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 10/19

Example problems:

Laplace-Beltrami equation,

 $u: \Gamma \to \mathbb{R}$ $-\Delta_{\Gamma} u = f$ on Γ

Vector Laplace-Beltrami equation,

$$u: \Gamma \to \mathbb{R}^d \qquad -\Delta_{\Gamma} u = f, \quad u \cdot \mathbf{n}_{\Gamma} = 0 \quad \text{on } \Gamma$$

■ Surface (Navier-)Stokes equations, ...

Unfitted FEM DG for Surface PDEs, the Trace FEM DG

Unfitted mesh entities:

- active mesh: \mathcal{T}_h (domain: N_h)
- (background) FE space: $\mathbb{P}^k(\mathcal{T}_h)$
- irregular! surface mesh: \mathcal{K}_h (surface: Γ_h)
- edges^a of surface mesh: \mathcal{E}_h
- (active) facets of background mesh: \mathcal{F}_h

^ain the 3D case, vertices otherwise

Trace**FEM** on irregular cut surface mesh for $-\Delta_{\Gamma} u = f$ on Γ

Naive discrete bilinear form for (negative) Laplace-Beltrami operator on $\mathbb{P}_{cont}^{k}(\mathcal{T}_{h})$:

$$a_h(u, v) = \sum_{K \in \mathcal{K}_h} \int_K \nabla_{\Gamma_h} u \cdot \nabla_{\Gamma_h} v, \qquad a_h(u, u) = ||\nabla_{\Gamma_h} u||_{\Gamma_h}^2$$

• $||\nabla_{\Gamma_h} \cdot ||_{\Gamma_h}$ has a large (near-) kernel: vol. fcts. vanishing on surface

Trace**FEM** on irregular cut surface mesh for $-\Delta_{\Gamma} u = f$ on Γ

Naive discrete bilinear form for (negative) Laplace-Beltrami operator on $\mathbb{P}_{cont}^{k}(\mathcal{T}_{h})$:

$$a_h(u,v) = \sum_{K \in \mathcal{K}_h} \int_K \nabla_{\Gamma_h} u \cdot \nabla_{\Gamma_h} v, \qquad a_h(u,u) = ||\nabla_{\Gamma_h} u||_{\Gamma_h}^2$$

• $||\nabla_{\Gamma_h} \cdot ||_{\Gamma_h}$ has a large (near-) kernel: vol. fcts. vanishing on surface Remedy: Normal gradient volume stabilisation

PDE acts in tangential direction of the surface. Add equation in normal direction:

$$j_h(u, v) = \sum_{T \in \mathcal{T}_h} \int_T \lambda^n (\nabla u \cdot \mathbf{n}_\Gamma) (\nabla v \cdot \mathbf{n}_\Gamma)$$

 \mathbf{n}_{Γ} : quasi-normal vector (extension of surface normal to neighborhood).

$$\underbrace{\sum_{K\in\mathcal{K}_{h}}\int_{K}\nabla_{\Gamma_{h}}u\cdot\nabla_{\Gamma_{h}}v}_{=a_{h}(u,v)}+\underbrace{\sum_{T\in\mathcal{T}_{h}}\int_{T}\lambda^{n}(\nabla u\cdot\mathbf{n}_{\Gamma})(\nabla v\cdot\mathbf{n}_{\Gamma})}_{=j_{h}(u,v)}$$

For $\lambda^n \gtrsim h$ there holds

$$\|u_h\|_{\Gamma}^2+j_h(u_h,u_h)\gtrsim h^{-1}\|u_h\|_{N_h}^2,\qquad u_h\in\mathbb{P}^k_{\mathrm{cont}}(\mathcal{T}_h)$$

 \rightsquigarrow For $h^{-1} \gtrsim \lambda^n$: optimal error and condition number bounds independent of cut position.

J. Grande, C. Lehrenfeld, A. Reusken. Analysis of a high-order trace finite element method for PDEs on level set surfaces. SINUM 56(1):228–255, 2018.

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 14/19

$$a_{h}(u,v) \rightsquigarrow \sum_{K \in \mathcal{K}_{h}} \int_{K} \nabla_{\Gamma_{h}} u \cdot \nabla_{\Gamma_{h}} v - \sum_{E \in \mathcal{E}_{h}} \int_{E} \{ n_{E} \cdot \nabla u \} [\![v]\!] - \sum_{E \in \mathcal{E}_{h}} \int_{E} \{ n_{E} \cdot \nabla v \} [\![u]\!] + \frac{\lambda}{h} \sum_{E \in \mathcal{E}_{h}} \int_{E} [\![u]\!] [\![v]\!]$$

Stability issues:

• λ scales with shape regularity that may become unbounded.

¹not all volume d.o.f.s needed this time

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 15/19

$$a_h(u,v) \rightsquigarrow \sum_{K \in \mathcal{K}_h} \int_K \nabla_{\Gamma_h} u \cdot \nabla_{\Gamma_h} v - \sum_{E \in \mathcal{E}_h} \int_E \{\!\!\{ n_E \cdot \nabla u \}\!\!\} [\![v]\!] - \sum_{E \in \mathcal{E}_h} \int_E \{\!\!\{ n_E \cdot \nabla v \}\!\!\} [\![u]\!] + \frac{\lambda}{h} \sum_{E \in \mathcal{E}_h} \int_E [\!\![u]\!] [\![v]\!]$$

Stability issues:

 \blacksquare λ scales with shape regularity that may become unbounded.

Remedy: Add stabilisations:

Normal gradient volume stabilisation (as before):

$$j_h(u, v) = \sum_{T \in \mathcal{T}_h} \int_T \lambda^n (\nabla u \cdot \mathbf{n}_{\Gamma}) (\nabla v \cdot \mathbf{n}_{\Gamma}),$$

Borrow stability from neighbouring volume elements¹.

$$\mathfrak{V}_{h}(u,v) = \sum_{F \in \mathcal{F}_{h}} \int_{F} \frac{\lambda_{0}^{*}}{h^{2}} \llbracket u \rrbracket \llbracket v \rrbracket + \int_{F} \lambda_{1}^{*} \llbracket \mathbf{n}_{F} \cdot \nabla u \rrbracket \llbracket \mathbf{n}_{F} \cdot \nabla v \rrbracket$$

¹not all volume d.o.f.s needed this time

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 15/19

$$a_h(u, v) \rightsquigarrow \sum_{K \in \mathcal{K}_h} \int_K \nabla_{\Gamma_h} u \cdot \nabla_{\Gamma_h} v - \sum_{E \in \mathcal{E}_h} \int_E \{\!\!\{ n_E \cdot \nabla u \}\!\!\} [\![v]\!] - \sum_{E \in \mathcal{E}_h} \int_E \{\!\!\{ n_E \cdot \nabla v \}\!\!\} [\![u]\!] + \frac{\lambda}{h} \sum_{E \in \mathcal{E}_h} \int_E [\!\![u]\!] [\![v]\!]$$

Stability issues:

• λ scales with shape regularity that may become unbounded.

Remedy: Add stabilisations:

Normal gradient volume stabilisation (as before):

$$j_h(u,v) = \sum_{T \in \mathcal{T}_h} \int_T \lambda^n (\nabla u \cdot \mathbf{n}_{\Gamma}) (\nabla v \cdot \mathbf{n}_{\Gamma}), \qquad \ker(j_h) = \{ v \in \mathbb{P}^k(\mathcal{T}_h) \mid \nabla v \cdot \mathbf{n}_{\Gamma} = 0 \}$$

Borrow stability from neighbouring volume elements¹.

$$\mathfrak{V}_{h}(u,v) = \sum_{F \in \mathcal{F}_{h}} \int_{F} \frac{\lambda_{0}^{*}}{h^{2}} \llbracket u \rrbracket \llbracket v \rrbracket + \int_{F} \lambda_{1}^{*} \llbracket \mathbf{n}_{F} \cdot \nabla u \rrbracket \llbracket \mathbf{n}_{F} \cdot \nabla v \rrbracket$$

¹not all volume d.o.f.s needed this time

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 15/19

Trace DG analysis / Trefftz Trace DG

GA

For $\lambda^n \simeq h^{-1}$, λ_0° , $\lambda_1^{\circ} \gtrsim 1$ optimal error and condition number bounds indep. of cut position.

 $\lambda^n \to \infty \rightsquigarrow u_h \in \ker(j_h) = \{ v \in \mathbb{P}^k(\mathcal{T}_h) \mid \nabla v \cdot \mathbf{n}_{\Gamma} = 0 \} \leftarrow \text{ Trefftz DG space}$

Trace DG analysis / Trefftz Trace DG

GA

For $\lambda^n \simeq h^{-1}$, λ_0° , $\lambda_1^{\circ} \gtrsim 1$ optimal error and condition number bounds indep. of cut position.

 $\lambda^n \to \infty \rightsquigarrow u_h \in \ker(j_h) = \{ v \in \mathbb{P}^k(\mathcal{T}_h) \mid \nabla v \cdot \mathbf{n}_{\Gamma} = 0 \} \leftarrow \text{Trefftz DG space}$

But $\ker(j_h) = \{0\}$ (if \mathbf{n}_{Γ} is complicated) \rightsquigarrow Locking $\frac{1}{2}$.

Trace DG analysis / Trefftz Trace DG

GA

For $\lambda^n \simeq h^{-1}$, λ_0° , $\lambda_1^{\circ} \gtrsim 1$ optimal error and condition number bounds indep. of cut position.

 $\lambda^n \to \infty \rightsquigarrow u_h \in \ker(j_h) = \{ v \in \mathbb{P}^k(\mathcal{T}_h) \mid \nabla v \cdot \mathbf{n}_{\Gamma} = 0 \} \leftarrow \text{Trefftz DG space}$

But $\ker(j_h) = \{0\}$ (if \mathbf{n}_{Γ} is complicated) \rightsquigarrow Locking $\frac{1}{2}$.

Analysis of TraceFEM reveals:

- It suffices to use $\mathbf{n}_h = \mathbf{n}_{\Gamma} + \mathcal{O}(h)$ in $j_h(\cdot, \cdot)$ for stability.
- It also suffices to penalize $\Pi^Q \mathbf{n}_h \cdot \nabla u$ in $j_h(\cdot, \cdot)$ for stability with $Q = \mathbb{P}^{k-1}(\mathcal{T}_h)$.

G

Modified Trace DG \rightsquigarrow Trace Trefftz DG

Relaxed normal gradient stabilization:

$$j_h^*(\lambda^n; u, v) = \sum_{\mathcal{T} \in \mathcal{T}_h} \int_{\mathcal{T}} \lambda^n (\Pi^Q \nabla u \cdot \mathbf{n}_{\Gamma}) (\Pi^Q \nabla v \cdot \mathbf{n}_{\Gamma}), \qquad \rightsquigarrow \ker(j_h) = \{ v \in \mathbb{P}^k(\mathcal{T}_h) \mid \Pi^Q \nabla v \cdot \mathbf{n}_{\Gamma} = 0 \}$$

Then, the following three formulations are equivalent:

	2	3
$u_h^1 := \lim_{\lambda^n \to \infty} u_\lambda^1$ with Find $u_\lambda^1 \in \mathbb{P}^k(\mathcal{T}_h)$ s.t.	Find $u_h^2, p_h^2 \in \mathbb{P}^k(\mathcal{T}_h) imes \mathbb{P}^{k-1}(\mathcal{T}_h)$ s.t.	Find $u_h^3 \in \ker(j_h^*)$ s.t.
$egin{aligned} &a_h(u_\lambda^1, v_h)+j_h^*(\lambda^n; u_\lambda^1, v_h)\ &=f_h(v_h) \end{aligned}$	$a_h(u_h^2, v_h) + b_h(v_h, p_h^2) = f_h(v_h), \ b_h(u_h^2, q_h) = 0,$	$a_h(u_h^3,v_h)=f_h(v_h)$
for all $v_h \in \mathbb{P}^k(\mathcal{T}_h).$	for all v_h , $q_h \in \mathbb{P}^k(\mathcal{T}_h) \times \mathbb{P}^{k-1}(\mathcal{T}_h)$, $b_h(u, q) = \sum_{T \in \mathcal{T}_h} \int_T \nabla u \cdot \mathbf{n}_{\Gamma} \cdot q$.	for all $v_h \in \ker(j_h^*)$.

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 17/19

G

Analysis, Dimension reduction, implementation

Analysis of 1 and equivalence of 1, 2, 3 yields quasi best approximation results:

$$\|u-u_h\|_{1,\Gamma,h}\lesssim \inf_{v_h\in \ker(j_h^*)}\|u-v_h\|_{1,\Gamma,h}$$

G

Analysis, Dimension reduction, implementation

Analysis of 1 and equivalence of 1, 2, 3 yields quasi best approximation results:

$$\|u-u_h\|_{1,\Gamma,h}\lesssim \inf_{\mathsf{v}_h\in\mathsf{ker}(j_h^*)}\|u-\mathsf{v}_h\|_{1,\Gamma,h}$$

$$\begin{array}{ll} \dim \mathbb{P}^{k}(T) & \dim \ker(j_{h}^{*}) \\ \begin{pmatrix} k+d \\ d \end{pmatrix} & \begin{pmatrix} k+(d-1) \\ (d-1) \end{pmatrix} & \rightsquigarrow \text{ dimension as in the fitted (DG) case} \\ \end{array}$$

Analysis, Dimension reduction, implementation Analysis of 1 and equivalence of 1, 2, 3 yields quasi best approximation results: $\|u-u_h\|_{1,\Gamma,h} \lesssim \inf_{v_h \in \ker(i^*)} \|u-v_h\|_{1,\Gamma,h}$ $\dim \mathbb{P}^{k}(T) \qquad \dim \ker(j_{h}^{*}) \\ \binom{k+d}{d} \qquad \binom{k+(d-1)}{(d-1)} \qquad \rightsquigarrow \text{ dimension as in the fitted (DG) case}$

E. Schlesinger, Embedded Trefftz Trace DG Methods for PDEs on unfitted Surfaces. Master's thesis, University of Göttingen, 2023.

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 18/19

🏁 Summary & Outlook

Unfitted Trefftz DG for elliptic PDEs

👻 penalty stabilisation harmonizes well with Trefftz DG (but not with Hybrid DG)

- Embedded Trefftz DG and aggregated FEM/DG are similar in virtue
- impose other conditions (interface / boundary) into space generically?

🏁 Summary & Outlook

GA

Unfitted Trefftz DG for elliptic PDEs

 $rac{1}{2}$ penalty stabilisation harmonizes well with Trefftz DG (but not with Hybrid DG)

- Embedded Trefftz DG and aggregated FEM/DG are similar in virtue
- 🤔 impose other conditions (interface / boundary) into space generically?

Unfitted Trefftz DG for surface PDEs

Projected normal gradient stabilisation keeps dofs at the surface

ightarrow Reduce dimension of FESpace to surface dimension $(3\mathsf{D}
ightarrow 2\mathsf{D},\,2\mathsf{D}
ightarrow 1\mathsf{D})$

Combine $-\Delta_{\Gamma}v = 0$ with $\mathbf{n}_{\Gamma} \cdot \nabla v = 0$ in one Trefftz space? (3D \rightarrow 1D, 2D \rightarrow 0D) (possibly with relaxations to avoid locking $\frac{1}{P}$)

Contemporary Challenges in Trefftz Methods, from Theory to Applications – The Trefftz Approach for unfitted FEM – C. Lehrenfeld 19/19

🏁 Summary & Outlook

Unfitted Trefftz DG for elliptic PDEs

Unfitted Trefftz DG for surface PDEs

penalty stabilisation harmonizes well with Trefftz DG (but not with Hybrid DG)

- Embedded Trefftz DG and aggregated FEM/DG are similar in virtue
- impose other conditions (interface / boundary) into space generically? ...

6

Projected normal gradient kt you for your attention! Reduce dimension of the Space to Surface di $(3D \rightarrow 2D, 2D \rightarrow 1D)$ Combine $\Delta_{\Gamma} v = 0$ with $\mathbf{n}_{\Gamma} \cdot \nabla v = 0$ in one Trefftz space? $(3D \rightarrow 1D, 2D \rightarrow 0D)$ (possibly with relaxations to avoid locking 🔒)

Vector-Laplace/Stokes: $-\mathcal{L}_{\Gamma}v = 0$, $\mathbf{n}_{\Gamma} \cdot \nabla v = 0$ and $\mathbf{v} \cdot \mathbf{n}_{\Gamma} = 0$ in one Trefftz space? (possibly with relaxations to avoid locking $\frac{1}{2}$) $(3D \rightarrow 1D, 2D \rightarrow 0D)$