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Motivation: Unfitted FEM

Idea of unfitted discretizations:
It can be beneficial to separate geometry and mesh for

time-dependent geometries (avoiding remeshing)
avoiding (non-trivial) meshing

Challenges in unfitted finite elements:
arbitrary small cuts cause stability issues.
implementation of unfitted boundary conditions
geometry description
cut integration
time integration
linear solvers, ...

Γ

Ω1

Ω2

Problem classes:
one-domain problems
(fictitious domain)
interface problems
surface PDEs
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Example problem: Poisson equation on an unfitted mesh
Consider

−∆u = f in Ω,

u = g on Γ = ∂Ω.

as prototypical elliptic problem on an unfitted mesh.

Setting:
Geometry description independent of the mesh
Th: active submesh with cut elements.
FE space based on Th

Starting point:
discontinuous Galerkin discretisation (Trefftz later)
weak imposition of boundary conditions through Nitsche

Level set geometry on an
unfitted mesh with active

elements marked
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Unfitted DG discretisation (symmetric interior penalty)
Find uh ∈ Pk(Th), s.t. ah(uh, vh)

+ h(uh, vh)

= `h(vh) ∀vh ∈ Pk(Th).

ah(u, v) =
∑

K

∫
K∩Ω
∇u ∇vdx +

∫
K∩Γ

consistency︷ ︸︸ ︷
−n · ∇u v

symmetry︷ ︸︸ ︷
−u n · ∇v

stability︷ ︸︸ ︷
+λk2h−1u vds

+
∑

F

∫
F∩Ω
−{{nF · ∇u}}[[v ]]−{{nF · ∇v}}[[u]]+λk2h−1[[u]][[v ]]ds

`h(v) =
∑

K

∫
K∩Ω

fvdx +

∫
K∩Γ
−g n · ∇v+λk2h−1g vds

{{·}}: average across facet, [[·]]: jump across facet  communication between facets.

This is IP method on the shape-irregular trimmed mesh {K ∩Ω}K∈Th  unstable

Add ghost penalty ( ) stabilization or repair mesh by cell merging.
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Unfitted Stabilisation: Penalty
Direct version of the -penalty operator:

h(u, v) =
∑

F∈Fh

γ

h2

∫
ωF

[[u]]ωF [[v ]]ωF dx

Here [[u]]ωF := u1 − u2 with ui = Eu
∣∣
Ti

,
E : Pm(K)→ Pm(Rd) : canonical pol. ext. to Rd .

This gives us the crucial property

‖v‖2
T1 . ‖v‖

2
T2 + h2 F

h (v , v).

T1 T2

F = T 1 ∩ T 2

ωF = T1 ∪ T2

We can borrow stability from neighbouring elements
This couples all element dofs in a facet patch ( doesn’t harmonizes with HDG )
Other versions of the stabilisation are possible.

How to choose Fh ?
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Stabilization facets Fh for the penalty

Form patches that allow to reach one good element from every (ill-)cut element.

T ∈Th\Th
Γ

T ∈ Th
Γ

F ∈Fh(T act
h )\Fh

?

F ∈Fh
?

Γ

Th
ω, ω∈Th

C

T ∈Th
ag\Th

C

F ∈Fh(Th
ag)

F ∈Fh(Th
ω)

Γ
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Unfitted (embedded) Trefftz DG

Find uh ∈ Tk
f (Th), s.t. ah(uh, vh)+ h(uh, vh) = `h(vh) ∀vh ∈ Tk

0(Th) with

Tk
f (Th) := {vh ∈ Pk(Th) : −∆vh = Πk−2f on K for all K ∈ Th}.

Complexity reduction similar to Hybrid DG: O(h−dkd)→ O(h−dkd−1)

Coupling pattern (element-to-element) compatible with penalty.

: global dof
: local dof
: removed dof

Hybrid DG standard DG Emb. Trefftz DG
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Recovering the DG error estimates
Lemma (H1 Estimate)
u ∈ Hm(Ω) exact solution with g ∈ H 1

2 (Γ), f ∈ L2(Ω), uh ∈ Tk
f (Th) Trefftz solution. Then,

|||u − uh|||Ah
+ |uh|

h
. hl‖u‖H l+1(Ω), l = min{m − 1, k}.

Theorem (L2 Estimate)
Additionally, assume L2(Ω)-H1(Ω)-regularity. Then

‖u − uh‖Ω . hl+1‖u‖H l+1(Ω), l = min{m − 1, k}.

Proofs follow ‘standard’ unfitted + ’standard’ Trefftz DG methodology:
Coercivity for sufficiently large γ and λ
(patchwise) averaged Taylor polynomial as interpolant of the extended solution (on Th)
Appropriate bound on ghost-penalty contribution.
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A few variants

Discrete formulation

Unfitted basis discretisation Stability measure for small cuts Assumed geometry handling

Discontinuous Galerkin

Trefftz DG

Global ghost penalty

Patch-wise ghost penalty

Element Aggregation

Exact geometry Ω = Ωh

Appr. geometry Ω 6= Ωh

Element aggregation: γ →∞ (patch-wise penalty)  patchwise harmonic polynomials.
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Embedded Trefftz2: Extracting harmonic & aggregated polynomials

Compute patchwise kernel of

wωh (u, v) =
∑
K∈ω

h2(∆u,∆v)K +
ω

h (u, v)

ker(wωh ): harmonic functions that are one polynomial on ω.

Setup reduces to:
Setup linear system for unstabilized (w.r.t. cuts) Pk(Th) discretization
Setup embedded matrix T corresponding to ker(wωh )
Setup reduced system (T T AT and T T b)
Solve for aggregated Trefftz DG basis
Reconstruct solution in Pk(Th)

Steps can also be patch-localized (to avoid the global DG assembly).
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Reference

Right: DG solution; Left: Trefftz DG solution

F. Heimann, C. Lehrenfeld, P. Stocker, H. von Wahl.
Unfitted Trefftz discontinuous Galerkin methods for elliptic boundary value problems.
ESAIM:M2AN 57(5):2803–2833, 2023.
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PDEs on surfaces

Example problems:
Laplace-Beltrami equation,

u : Γ→ R −∆Γu = f on Γ

Vector Laplace-Beltrami equation,

u : Γ→ Rd −∆Γu = f , u · nΓ = 0 on Γ

Surface (Navier-)Stokes equations, ...
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Unfitted FEM DG for Surface PDEs, the Trace FEM DG

Unfitted mesh entities:
active mesh: Th (domain: Nh)
(background) FE space: Pk(Th)

irregular! surface mesh: Kh (surface: Γh)
edgesa of surface mesh: Eh

(active) facets of background mesh: Fh

ain the 3D case, vertices otherwise

Γh, Kh

Nh, Th

Fh

Eh
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TraceFEM on irregular cut surface mesh for −∆Γu = f on Γ
Naive discrete bilinear form for (negative) Laplace-Beltrami operator on Pk

cont(Th):

ah(u, v) =
∑

K∈Kh

∫
K
∇Γh u · ∇Γh v , ah(u, u) = ||∇Γh u||2Γh

||∇Γh · ||Γh has a large (near-) kernel: vol. fcts. vanishing on surface

Remedy: Normal gradient volume stabilisation
PDE acts in tangential direction of the surface. Add equation in normal direction:

jh(u, v) =
∑
T∈Th

∫
T
λn(∇u · nΓ)(∇v · nΓ)

nΓ: quasi-normal vector (extension of surface normal to neighborhood).
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Interior penalty Trace DG on irregular cut surface mesh

∑
K∈Kh

∫
K
∇Γh u · ∇Γh v︸ ︷︷ ︸

=ah(u,v)

+
∑
T∈Th

∫
T
λn(∇u · nΓ)(∇v · nΓ)︸ ︷︷ ︸

=jh(u,v)
For λn & h there holds

‖uh‖2
Γ + jh(uh, uh) & h−1‖uh‖2

Nh
, uh ∈ Pk

cont(Th)

 For h−1 & λn: optimal error and condition number bounds independent of cut position.

J. Grande, C. Lehrenfeld, A. Reusken.
Analysis of a high-order trace finite element method for PDEs on level set surfaces.
SINUM 56(1):228–255, 2018.
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Interior penalty Trace DG on irregular cut surface mesh
ah(u, v) 

∑
K∈Kh

∫
K
∇Γh u · ∇Γh v −

∑
E∈Eh

∫
E
{{nE · ∇u}}[[v ]]−

∑
E∈Eh

∫
E
{{nE · ∇v}}[[u]] + λh

∑
E∈Eh

∫
E
[[u]][[v ]]

Stability issues:
λ scales with shape regularity that may become unbounded.

Remedy: Add stabilisations:
Normal gradient volume stabilisation (as before):

jh(u, v) =
∑
T∈Th

∫
T
λn(∇u · nΓ)(∇v · nΓ),

ker(jh) = {v ∈ Pk(Th) | ∇v · nΓ = 0}

Borrow stability from neighbouring volume elements1.

h(u, v) =
∑

F∈Fh

∫
F

λ0
h2 [[u]][[v ]] +

∫
F
λ1 [[nF · ∇u]][[nF · ∇v ]]

1not all volume d.o.f.s needed this time
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Trace DG analysis / Trefftz Trace DG

For λn ' h−1, λ0 , λ1 & 1 optimal error and condition number bounds indep. of cut position.

λn →∞ uh ∈ ker(jh) = {v ∈ Pk(Th) | ∇v · nΓ = 0} ← Trefftz DG space

But ker(jh) = {0} (if nΓ is complicated)  Locking .

Analysis of TraceFEM reveals:
It suffices to use nh = nΓ +O(h) in jh(·, ·) for stability.
It also suffices to penalize ΠQnh · ∇u in jh(·, ·) for stability with Q = Pk−1(Th).
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Modified Trace DG  Trace Trefftz DG
Relaxed normal gradient stabilization:

j∗h(λn; u, v) =
∑
T∈Th

∫
T
λn(ΠQ∇u · nΓ)(Π

Q∇v · nΓ),  ker(jh) = {v ∈ Pk(Th) | ΠQ∇v · nΓ = 0}

Then, the following three formulations are equivalent:

u1
h := limλn→∞ u1

λ with
Find u1

λ ∈ Pk(Th) s.t.

ah(u1
λ, vh) + j∗h(λn; u1

λ, vh)

= fh(vh)

for all vh ∈ Pk(Th).

Find u2
h, p2

h ∈ Pk(Th)×Pk−1(Th) s.t.

ah(u2
h, vh) + bh(vh, p2

h) = fh(vh),

bh(u2
h, qh) = 0,

for all vh, qh ∈ Pk(Th)× Pk−1(Th),
bh(u, q) =

∑
T∈Th

∫
T ∇u · nΓ · q.

Find u3
h ∈ ker(j∗h) s.t.

ah(u3
h, vh) = fh(vh)

for all vh ∈ ker(j∗h).
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Analysis, Dimension reduction, implementation
Analysis of and equivalence of , , yields quasi best approximation results:

‖u − uh‖1,Γ,h . inf
vh∈ker(j∗h )

‖u − vh‖1,Γ,h

dimPk(T ) dim ker(j∗h)(
k + d

d

) (
k + (d − 1)
(d − 1)

)
 dimension as in the fitted (DG) case

E. Schlesinger,
Embedded Trefftz Trace DG Methods for PDEs on unfitted Surfaces.
Master’s thesis, University of Göttingen, 2023.
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Summary & Outlook
Unfitted Trefftz DG for elliptic PDEs

penalty stabilisation harmonizes well with Trefftz DG (but not with Hybrid DG)
Embedded Trefftz DG and aggregated FEM/DG are similar in virtue
impose other conditions (interface / boundary) into space generically?

Unfitted Trefftz DG for surface PDEs
Projected normal gradient stabilisation keeps dofs at the surface
Reduce dimension of FESpace to surface dimension (3D → 2D, 2D → 1D)
Combine −∆Γv = 0 with nΓ · ∇v = 0 in one Trefftz space? (3D → 1D, 2D → 0D)
(possibly with relaxations to avoid locking )

Vector-Laplace/Stokes: −LΓv = 0, nΓ · ∇v = 0 and v · nΓ = 0 in one Trefftz space?
(possibly with relaxations to avoid locking ) (3D → 1D, 2D → 0D)

Thank you for your attention!
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