Tuning the Role of Unknowns in Higher Order (Conforming- and Non-conforming) Finite Element Methods

Christoph Lehrenfeld

joint w. Philip L. Lederer¹, Paul Stocker², Igor Voulis³ and others ¹University of Hamburg, ²University of Vienna, ³University of Göttingen

Lothar-Collatz-Kolloquium für Angewandte Mathematik – University of Hamburg November 21, 2024

Example Application Fields for Higher Order Finite Element Methods

The Roles of Unknowns in Conforming FEM: A Local-Global Splitting

Unknowns in Non-conforming FEM (DG)

Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

Example Application Fields for Higher Order Finite Element Methods

- The Roles of Unknowns in Conforming FEM: A Local-Global Splitting
- Unknowns in Non-conforming FEM (DG)
- Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

Incompressible flows

Kelvin-Helmholtz instability⁴

¹with R. Gritzki, M. Rösler & C. Felsmann, TU Dresden

²with N. Fehn, M. Kronbichler (TU München), G. Lube & P.W. Schroeder (Uni Göttingen)

 $^{^3}$ with P.L. Lederer & J. Schöberl (TU Wien) – & T. Brüers & M. Wardetzky

⁴with V. John (WIAS Berlin), P.L. Lederer, J. Schöberl (TU Wien), G. Lube, P.W. Schroeder (U. Gö.)

Moving domain $problems^5$

⁵with Reusken (Aachen), Olshaniskii (Houston), Massing (Trondheim), Preuß (UCL), v.Wahl (Jena) Tuning the Role of Unknowns in Higher Order Finite Element Methods – C. Lehrenfeld

Computational Helioseismology⁶

 $\rho(-i\omega + \mathbf{u} \cdot \nabla + \Omega \times)^2 \boldsymbol{\xi} - (\nabla + \mathbf{q})(\rho c^2 (\operatorname{div} + \mathbf{q} \cdot) \boldsymbol{\xi}) - i\gamma \rho \omega \boldsymbol{\xi} + ..(compact)_{\cdots} = \mathbf{s} \quad \text{in} \quad \Omega.$

⁶with T. Hohage, M. Halla & T. van Beeck (Uni Göttingen) D. Fournier & L. Gizon (MPS Göttingen) Tuning the Role of Unknowns in Higher Order Finite Element Methods – C. Lehrenfeld

Computational Helioseismology⁶

CRC 1456

⁶ with T. Hohage, M. Halla & T. van Beeck (Uni Göttingen) D. Fournier & L. Gizon (MPS Göttingen) Tuning the Role of Unknowns in Higher Order Finite Element Methods – C. Lehrenfeld

Example Application Fields for Higher Order Finite Element Methods

The Roles of Unknowns in Conforming FEM: A Local-Global Splitting

Unknowns in Non-conforming FEM (DG)

Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

Finite Element Discretizations (with some simplifications)

Generic linear PDE problem

 $\mathcal{L}u = \ell$ in Ω + b.c.

Finite Element Discretizations (with some simplifications)

Generic linear PDE problem

 $\mathcal{L}u = \ell$ in Ω + b.c.

Continuous \rightsquigarrow discrete variational formulation

$$\begin{array}{ll} \text{Find} \ u \in V \ , \ \text{s.t.} \ a \ (u,v) &= \ell(v) \quad \forall \ v \in W, \quad V, \ W \ \text{Hilbert spaces.} \\ & & \downarrow & \downarrow & \downarrow \\ \text{Find} \ u_h \in V_h, \ \text{s.t.} \ a_h(u_h,v_h) = \ell_h(v_h) \ \forall \ v_h \in V_h, \quad V_h \ \text{finite dimensional Hilbert space.} \end{array}$$

Finite Element Discretizations (with some simplifications)

Generic linear PDE problem

 $\mathcal{L}u = \ell$ in Ω + b.c.

Continuous \rightsquigarrow discrete variational formulation

Design choices in a FE discretization

- How to choose V_h ?
- How to choose $a_h(\cdot, \cdot), f_h(\cdot)$?
- solvers, preconditioners, implementation, ...

Domain decomposition into a mesh of simple elements

Approximation

 \blacksquare With element-wise polynomials of degree k we ideally obtain

$$\inf_{v_h \in V_h} \|u - v_h\|_h \lesssim \left(\frac{h}{k}\right)^k \|u\|_{H^{k+1}(\Omega)}$$

- Convergence in h and/or k possible.
- If regularity permits, increasing k should be prefered over decreasing h.

The construction of finite elements: The conforming way $(V_h \subset V)$

• Pick a polynomial space on each element

Polynomial on one element

The construction of finite elements: The conforming way ($V_h \subset V$

• Pick a polynomial space on each element

Polynomial on one element

• Add constraints at element interfaces

Here: continuity $(V = H^1(\Omega))$

 $V_h = \{ v \in C(\Omega) \mid u \mid_T \in \mathcal{P}^k(T) \} \subset V = H^1(\Omega)$

The construction of finite elements: The conforming way ($V_h \subset V$)

• Pick a polynomial space on each element

Polynomial on one element

 $V_h = \{ v \in C(\Omega) \mid u \mid_T \in \mathcal{P}^k(T) \} \subset V = H^1(\Omega)$

Realization through splitting of dofs / basis functions

- interior basis fcts. (bubbles) vanish on skeleton (local dofs)
- shared dofs are shared on element interfaces (skeleton)

• Add constraints at element interfaces

Here: continuity $(V = H^1(\Omega))$

Higher Order Methods

- The approximation error per dof is smaller
- But the costs per dof increase as sparsity decreases

Higher Order Methods

- The approximation error per dof is smaller
- But the costs per **dof** increase as sparsity decreases

Simple illustration

 $\begin{array}{c} \underline{\text{Low order / small } k} \\ \mathcal{O}(1) \text{ dofs per geom. entity} \end{array} \qquad \qquad \begin{array}{c} \underline{\text{High order / large } k} \\ \begin{pmatrix} k+d \\ d \end{pmatrix} \sim \mathcal{O}(k^d) \text{ dofs per geom. entity} \end{array}$

Different Roles of Unknowns in Continuous Scalar FEM

Unknowns scale with $\mathcal{O}(k^d)$ (w.r.t. k), but

- element local dofs scale with $\mathcal{O}(k^d)$, but only couple locally
- only $\mathcal{O}(k^{d-1})$ dofs on the skeleton

Different Roles of Unknowns in Continuous Scalar FEM

Unknowns scale with $\mathcal{O}(k^d)$ (w.r.t. k), but

- element local dofs scale with $\mathcal{O}(k^d)$, but only couple locally
- only $\mathcal{O}(k^{d-1})$ dofs on the skeleton

Decompose FE space into

■ globally coupled/skeleton parts and

sparsity pattern for k = 5

Different Roles of Unknowns in Continuous Scalar FEM

triangular mesh

Unknowns scale with $\mathcal{O}(k^d)$ (w.r.t. k), but

- element local dofs scale with $\mathcal{O}(k^d)$, but only couple locally
- only $\mathcal{O}(k^{d-1})$ dofs on the skeleton

Decompose FE space into

• local parts: $V_h = \mathbb{T}_h \oplus \mathbb{L}_h.$

■ globally coupled/skeleton parts and

 $egin{array}{lll} A_{\mathbb{TT}} & : \mathcal{O}(k^{2d-2}) ext{ entries } \\ A_{\mathbb{LT}}, A_{\mathbb{TL}} : \mathcal{O}(k^{2d-1}) ext{ entries } \\ A_{\mathbb{LL}} & : \mathcal{O}(k^{2d}) ext{ entries, block diagonal } \end{array}$

Static condensation for conforming FEM

Simple calculation yields $(A_{\mathbb{LL}}^{-1}$ is cheap to form)

$$\begin{pmatrix} A_{\mathbb{T}\mathbb{T}} & A_{\mathbb{T}\mathbb{L}} \\ A_{\mathbb{L}\mathbb{T}} & A_{\mathbb{L}\mathbb{L}} \end{pmatrix} = \begin{pmatrix} I & A_{\mathbb{T}\mathbb{L}}A_{\mathbb{L}\mathbb{L}}^{-1} \\ 0 & I \end{pmatrix} \cdot \begin{pmatrix} S & 0 \\ 0 & A_{\mathbb{L}\mathbb{L}} \end{pmatrix} \cdot \begin{pmatrix} I & 0 \\ A_{\mathbb{L}\mathbb{L}}^{-1}A_{\mathbb{L}\mathbb{T}} & I \end{pmatrix} \text{ with } S = A_{\mathbb{T}\mathbb{T}} - A_{\mathbb{T}\mathbb{L}}A_{\mathbb{L}\mathbb{T}}^{-1}A_{\mathbb{L}\mathbb{T}}$$

Costs for solving linear systems:

- Global solution with S ($\mathcal{O}(k^{d-1} \cdot \#\mathcal{T}_h)$ dofs) (and setup)
- Setup and application of A_{LL}^{-1} (# \mathcal{T}_h times $\mathcal{O}(k^d)$ dofs; parallelizable)

Static condensation for conforming FEM

9/32

Simple calculation yields $(A_{\mathbb{LL}}^{-1}$ is cheap to form)

$$\begin{pmatrix} A_{\mathbb{T}\mathbb{T}} & A_{\mathbb{T}\mathbb{L}} \\ A_{\mathbb{L}\mathbb{T}} & A_{\mathbb{L}\mathbb{L}} \end{pmatrix} = \begin{pmatrix} I & A_{\mathbb{T}\mathbb{L}}A_{\mathbb{L}\mathbb{L}}^{-1} \\ 0 & I \end{pmatrix} \cdot \begin{pmatrix} S & 0 \\ 0 & A_{\mathbb{L}\mathbb{L}} \end{pmatrix} \cdot \begin{pmatrix} I & 0 \\ A_{\mathbb{L}\mathbb{L}}^{-1}A_{\mathbb{L}\mathbb{T}} & I \end{pmatrix} \text{ with } S = A_{\mathbb{T}\mathbb{T}} - A_{\mathbb{T}\mathbb{L}}A_{\mathbb{L}\mathbb{T}}^{-1}A_{\mathbb{L}\mathbb{T}}$$

Costs for solving linear systems:

- Global solution with $S(\mathcal{O}(k^{d-1} \cdot \#\mathcal{T}_h) \operatorname{dofs})$ (and setup)
- Setup and application of A_{LL}^{-1} (# \mathcal{T}_h times $\mathcal{O}(k^d)$ dofs; parallelizable)

Summary:

Static condensation allows to exploit a local-global dof splitting \rightsquigarrow increases efficiency \mathscr{A} of higher order conforming FEM

Example Application Fields for Higher Order Finite Element Methods

The Roles of Unknowns in Conforming FEM: A Local-Global Splitting

Unknowns in Non-conforming FEM (DG)

Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

Non-conforming (Discontinuous Galerkin) FEM $\mathcal{L}u = \ell \text{ in } \Omega \subset \mathbb{R}^d + \text{boundary conditions.}$

A typical standard DG discretization $(V_h = \mathbb{P}^k(\mathcal{T}_h) \not\subset V)$:

Find
$$u_h \in \mathbb{P}^k(\mathcal{T}_h)$$
, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \qquad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$

with disconnected polynomial spaces $\mathbb{P}^{k}(K)$. Regularity is imposed weakly through $a_{h}(\cdot, \cdot)$.

Non-conforming (Discontinuous Galerkin) FEM $\mathcal{L}u = \ell \text{ in } \Omega \subset \mathbb{R}^d + \text{ boundary conditions.}$

A typical standard DG discretization $(V_h = \mathbb{P}^k(\mathcal{T}_h) \not\subset V)$:

Find
$$u_h \in \mathbb{P}^k(\mathcal{T}_h)$$
, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \qquad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$

with disconnected polynomial spaces $\mathbb{P}^{k}(K)$. Regularity is imposed weakly through $a_{h}(\cdot, \cdot)$.

Motivation for DG (instead of continuous Galerkin) Exploiting flexibility for ...

- ... conservation properties (test function χ_K)
- ... simple stability mechanism for non-symm./non-lin. problems (e.g. convection)
- ... simplicity of data structures / space construction (polygonal meshes)
- ... local bases, block diagonal mass matrices, ...

Example: Standard DG for Poisson (Symm. int. pen. DG) $\mathcal{L}u = -\Delta u = \ell \text{ in } \Omega, \quad g = u \text{ on } \partial \Omega.$

Example: Standard DG for Poisson (Symm. int. pen. DG)

$$\mathcal{L}u = -\Delta u = \ell \text{ in } \Omega, \quad g = u \text{ on } \partial\Omega.$$

$$\overrightarrow{\text{DG discretization}}$$
Find $u_h \in \mathbb{P}^k(\mathcal{T}_h), \text{ s.t. } a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h) \text{ with}$

$$a_h(u, v) = \sum_K \int_K \nabla u \nabla v \, dx + \sum_{F \in \mathcal{F}_h \text{ int}} \int_F \underbrace{-\{\!\{\partial_n u\}\!\}[v]}_{-\{\!\{\partial_n v\}\!\}[u]} \underbrace{-\{\!\{\partial_n v\}\!\}[u]\!]}_{+ \alpha p^2 h^{-1}[\![u]\!][v]\!]} ds$$

$$+ \sum_{F \in \mathcal{F}_h \text{ bnd}} \int_F -\partial_n u \, v - \partial_n v \, u + \alpha p^2 h^{-1} u v \, ds$$

$$\ell_h(v) = \sum_K \int_K f v \, dx + \sum_{F \in \mathcal{F}_h \text{ bnd}} \int_F (-\partial_n v + \alpha p^2 h^{-1} v) g \, ds.$$

Communication between neighbors with average $(\{\!\!\{\cdot\}\!\!\})$ and jump $([\!\![\cdot]\!\!])$ across facets.

Solving linear systems with DG

Issues of DG methods (compared to CG)
▲ Breaking up continuity ~ more unknowns (dofs)
▲ Essentially all element dofs couple with all neighbor dofs ~ even more couplings, i.e. more non-zero entries (nzes)
② No local-global splitting ~ no static condensation

Solving linear systems with DG

Issues of DG methods (compared to CG)
 ▲ Breaking up continuity ~> more unknowns (dofs)
 ▲ Essentially all element dofs couple with all neighbor dofs ~> even more couplings, i.e. more non-zero entries (nzes)
 Wo local-global splitting ~> no static condensation

Remedies to re-introduce a local-global splitting?

12/32

Example Application Fields for Higher Order Finite Element Methods

- The Roles of Unknowns in Conforming FEM: A Local-Global Splitting
- Unknowns in Non-conforming FEM (DG)

Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

Hybridization of DG methods: The concept

- \blacksquare add discontinuous facet (skeleton) unknowns λ_h
- avoid direct communication between elements $(\mathcal{O}(k^d) \not \leadsto \mathcal{O}(k^d))$
- communication between element dofs and facet dofs instead $(\mathcal{O}(k^d) \iff \mathcal{O}(k^{d-1}))$
- apply static condensation

⁷B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of [dG], [...] for [2nd] order elliptic problems. SINUM, 2009 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Hybrid DG in primal formulation (Hybrid Symm. int. pen. DG)

$$\mathcal{L}u = -\Delta u = \ell \text{ in } \Omega, \quad g = u \text{ on } \partial \Omega.$$

HDG discretization

Find $\underline{u}_h = (u_h, \lambda_h) \in \mathbb{P}^k(\mathcal{T}_h) \times F_{h,D}^k(\mathcal{F}_h)$, s.t. $a_h(\underline{u}_h, \underline{v}_h) = \ell_h(\underline{v}_h) \quad \forall \underline{v}_h = (v_h, \mu_h) \in \mathbb{P}^k(\mathcal{T}_h) \times F_{h,0}^k(\mathcal{F}_h)$ with $F_h^k(\mathcal{F}_h) = \{ v \in L^2(\mathcal{F}_h) \mid v|_F \in \mathbb{P}^k(F) \; \forall F \in \mathcal{F}_h \}$, and

⁷B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of [dG], [...] for [2nd] order elliptic problems. SINUM, 2009 Tuning the Role of Unknowns in Higher Order Finite Element Methods – C. Lehrenfeld

Hybrid DG in primal formulation (Hybrid Symm. int. pen. DG)

$$\mathcal{L}u = -\Delta u = \ell \text{ in } \Omega, \quad g = u \text{ on } \partial \Omega.$$

HDG discretization

Find $\underline{u}_h = (u_h, \lambda_h) \in \mathbb{P}^k(\mathcal{T}_h) \times F_{h,D}^k(\mathcal{F}_h)$, s.t. $a_h(\underline{u}_h, \underline{v}_h) = \ell_h(\underline{v}_h) \quad \forall \underline{v}_h = (v_h, \mu_h) \in \mathbb{P}^k(\mathcal{T}_h) \times F_{h,0}^k(\mathcal{F}_h)$ with $F_h^k(\mathcal{F}_h) = \{ v \in L^2(\mathcal{F}_h) \mid v|_F \in \mathbb{P}^k(F) \; \forall F \in \mathcal{F}_h \}$, and

$$a_{h}(\underline{u}_{h},\underline{v}_{h}) = \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \nabla v_{h} \, dx + \int_{\partial K} \underbrace{-\partial_{\mathbf{n}} u_{h}[\underline{v}_{h}]}_{\text{consistency}} \underbrace{-\partial_{\mathbf{n}} v_{h}[\underline{u}_{h}]}_{\text{symmetry}} \underbrace{+ \alpha p^{2} h^{-1}[\underline{u}_{h}][\underline{v}_{h}]}_{\text{stability}} \, ds$$
$$\ell_{h}(\underline{v}_{h}) = \sum_{K \in \mathcal{T}_{h}} \int_{K} f v_{h} \, dx$$

 $\llbracket \underline{u}_h \rrbracket = u_h - \lambda_h$: jump between el. trace & facet function.

⁷B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of [dG], [...] for [2nd] order elliptic problems. SINUM, 2009 Tuning the Role of Unknowns in Higher Order Finite Element Methods – C. Lehrenfeld

Hybrid DG in primal formulation (Hybrid Symm. int. pen. DG)

$$\mathcal{L}u = -\Delta u = \ell \text{ in } \Omega, \quad g = u \text{ on } \partial \Omega.$$

HDG discretization

Find $\underline{u}_h = (u_h, \lambda_h) \in \mathbb{P}^k(\mathcal{T}_h) \times F_{h,D}^k(\mathcal{F}_h)$, s.t. $a_h(\underline{u}_h, \underline{v}_h) = \ell_h(\underline{v}_h) \quad \forall \underline{v}_h = (v_h, \mu_h) \in \mathbb{P}^k(\mathcal{T}_h) \times F_{h,0}^k(\mathcal{F}_h)$ with $F_h^k(\mathcal{F}_h) = \{ v \in L^2(\mathcal{F}_h) \mid v|_F \in \mathbb{P}^k(F) \; \forall F \in \mathcal{F}_h \}$, and

$$a_{h}(\underline{u}_{h}, \underline{v}_{h}) = \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \nabla v_{h} \, dx + \int_{\partial K} \underbrace{-\partial_{\mathbf{n}} u_{h}[\underline{v}_{h}]}_{\text{consistency}} \underbrace{-\partial_{\mathbf{n}} v_{h}[\underline{u}_{h}]}_{\text{symmetry}} \underbrace{+ \alpha p^{2} h^{-1}[\underline{u}_{h}][\underline{v}_{h}]}_{\text{stability}} \, ds$$
$$\ell_{h}(\underline{v}_{h}) = \sum_{K \in \mathcal{T}_{h}} \int_{K} f v_{h} \, dx$$

 $\llbracket \underline{u}_h \rrbracket = u_h - \lambda_h$: jump between el. trace & facet function. no "DG jump" and no average across facets \rightsquigarrow communication stays local.

⁷B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of [dG], [...] for [2nd] order elliptic problems. SINUM, 2009 Tuning the Role of Unknowns in Higher Order Finite Element Methods – C. Lehrenfeld

Hybrid DG: static condensation for DG

Hybridization allows to re-introduce static condensation in DG formulations. Dominating costs depend on skeleton dofs: $\mathcal{O}(k^{d-1})$. – further tuning possible.

⁸C.L., J. Schöberl, High order exactly divergence-free [HDG] methods for unsteady incompressible flows, CMAME, 2016. Tuning the Role of Unknowns in Higher Order Finite Element Methods – C. Lehrenfeld

Hybrid DG: static condensation for DG

Yell Hybridization allows to re-introduce static condensation in DG formulations.
 I Dominating costs depend on skeleton dofs: O(k^{d-1}). – further tuning possible.
 △ Applicable to most DG discretizations ~ key for efficiency of H(div) flow solvers⁸.

⁸C.L., J. Schöberl, High order exactly divergence-free [HDG] methods for unsteady incompressible flows, CMAME, 2016. Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Example Application Fields for Higher Order Finite Element Methods

The Roles of Unknowns in Conforming FEM: A Local-Global Splitting

Unknowns in Non-conforming FEM (DG)

Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

Example Application Fields for Higher Order Finite Element Methods

The Roles of Unknowns in Conforming FEM: A Local-Global Splitting

Unknowns in Non-conforming FEM (DG)

Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

Reduction of global dofs using Hybrid Trefftz DG $\,$

Alternative to Hybridization

approximation (order) is preserved

• (all) ndofs: $\mathcal{O}(k^d) \iff \mathcal{O}(k^{d-1})$

How?

Reduction of global dofs using $\frac{\text{Hybrid}}{\text{Hybrid}}$ Trefftz DG

Alternative to Hybridization

- approximation (order) is preserved
- (all) ndofs: $\mathcal{O}(k^d) \iff \mathcal{O}(k^{d-1})$

🄁 How?

Trefftz DG idea:

- Replace full polynomial spaces
- Use element-local PDE solutions
- Exploit flexibility of DG (no continuity dofs required)

Example: Trefftz DG for Laplace⁹

$$\mathcal{L}u = -\Delta u = 0$$
 in Ω , $u = g$ on $\partial \Omega$.

DG discretization

Find
$$u_h \in \mathbb{P}^k(\mathcal{T}_h)$$
, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$ with
 $a_h(u, v) = \sum_K \int_K \nabla u \nabla v \, dx + \sum_{F \in \mathcal{F}_h \text{ int}} \int_F -\{\!\{\partial_n u\}\!\} [\![v]\!] -\{\!\{\partial_n v\}\!\} [\![u]\!] + \alpha k^2 h^{-1} [\![u]\!] [\![v]\!] \, ds + bnd.$

⁹R. Hiptmaier, A. Moiola, I. Perugia, C. Schwab, Approx. by harmonic polynomials [..] of Trefftz hp-dGFEM, ESAIM, 2014 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Example: Trefftz DG for Laplace⁹

$$\mathcal{L}u = -\Delta u = 0$$
 in Ω , $u = g$ on $\partial \Omega$.

DG discretization

Find
$$u_h \in \mathbb{P}^k(\mathcal{T}_h)$$
, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$ with
 $a_h(u, v) = \sum_K \int_K \nabla u \nabla v \, dx + \sum_{F \in \mathcal{F}_h^{\text{int}}} \int_F -\{\!\{\partial_n u\}\}\![v]\!] -\{\!\{\partial_n v\}\!\}\![u]\!] + \alpha k^2 h^{-1}[\![u]\!][v]\!] \, ds + bnd.$

Trefftz DG discretization

 $\mathbb{T}^{k}(\mathcal{T}_{h}) := \ker(-\Delta) = \{ v \in \mathbb{P}^{k}, \ \mathcal{L}v = 0 \ (\text{pointwise}) \text{ on each } K \in \mathcal{T}_{h} \} \subset \mathbb{P}^{k}(\mathcal{T}_{h}).$

Find $u_{\mathbb{T}} \in \mathbb{T}^k(\mathcal{T}_h)$, s.t. $a_h(u_{\mathbb{T}}, v_{\mathbb{T}}) = \ell_h(v_{\mathbb{T}}) \qquad \forall v_{\mathbb{T}} \in \mathbb{T}^k(\mathcal{T}_h).$

⁹R. Hiptmaier, A. Moiola, I. Perugia, C. Schwab, Approx. by harmonic polynomials [..] of Trefftz hp-dGFEM, ESAIM, 2014 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Reduction of computational costs (Laplace)

Counting of ndofs (triangular mesh, $\mathcal{L} = -\Delta$)

•
$$N = \dim(\mathbb{P}^k) = \#\mathcal{T}_h \cdot \frac{(k+1)(k+2)}{2} \sim \mathcal{O}(k^d),$$

- $L = \dim(\operatorname{range}(\mathcal{L})) = \mathbb{P}^{k-2}(\mathcal{T}_h) = \#\mathcal{T}_h \cdot \frac{(k-1)k}{2} \sim \mathcal{O}(k^d),$
- $M = \dim(\mathbb{T}^k(\mathcal{T}_h)) = \dim(\ker(\mathcal{L})) = N L = \#\mathcal{T}_h \cdot (2k+1) \sim \mathcal{O}(k^{d-1})$

Trefftz DG achieves reduction $\mathcal{O}(k^d) \rightsquigarrow \mathcal{O}(k^{d-1})$ (for all dofs)!

Trefftz DG coupling pattern

Difficulties with classical Trefftz DG methods

GA

Disadvantages and limitations

 \bigcirc New basis for each diff operator $\mathcal L$ / PDE

Conditioning often problematic

- X Not (directly) suitable for inhomogeneous equations $f \neq 0$
- X Not (directly) suitable for non-constant coefficients, e.g. $\mathcal{L} = \operatorname{div}(\alpha \nabla \cdot)$

GA

Disadvantages and limitations

 \bigcirc New basis for each diff operator $\mathcal L$ / PDE

Conditioning often problematic

X Not (directly) suitable for inhomogeneous equations $f \neq 0$

X Not (directly) suitable for non-constant coefficients, e.g. $\mathcal{L} = \operatorname{div}(\alpha \nabla \cdot)$

So far: Method not flexible, used only in special cases

? 🤔 Can we turn Trefftz into a general purpose tool 🛠 ?

Example Application Fields for Higher Order Finite Element Methods

The Roles of Unknowns in Conforming FEM: A Local-Global Splitting

Unknowns in Non-conforming FEM (DG)

Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

Avoid setting up Trefftz basis from scratch! $\mathbb{T}^k(\mathcal{T}_h) \subset \mathbb{P}^k$, $M = \dim(\mathbb{T}^k) < \dim(\mathbb{P}^k) = N$

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Avoid setting up Trefftz basis from scratch! $\mathbb{T}^k(\mathcal{T}_h) \subset \mathbb{P}^k$, $M = \dim(\mathbb{T}^k) < \dim(\mathbb{P}^k) = N$

For any basis $\{\psi_j\}$ we have $\psi_j \in \mathbb{P}^k(\mathcal{T}_h) \Rightarrow \psi_j = \sum_{i=1}^N \mathbf{T}_{ij}\phi_i, \ j = 1, .., M$, for $\mathbf{T} \in \mathbb{R}^{N \times M}$.

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Avoid setting up Trefftz basis from scratch! $\mathbb{T}^k(\mathcal{T}_h) \subset \mathbb{P}^k$, $M = \dim(\mathbb{T}^k) < \dim(\mathbb{P}^k) = N$

For any basis $\{\psi_j\}$ we have $\psi_j \in \mathbb{P}^k(\mathcal{T}_h) \Rightarrow \psi_j = \sum_{i=1}^N \mathbf{T}_{ij}\phi_i, \ j = 1, ..., M$, for $\underline{\mathbf{T} \in \mathbb{R}^{N \times M}}$. Let $\mathcal{L} : \mathbb{P}^k(\mathcal{T}_h) \to Q'_h$ with $Q_h = \underset{K \in \mathcal{T}_h}{\times} Q_K = \operatorname{span}\{\varphi_i\}_{i=1,...,L}$. Then with

 $(\mathbf{W})_{ij} = w_h(\phi_j, \varphi_i) = \sum_{K \in \mathcal{T}_h} \langle \mathcal{L}\phi_j, \varphi_i |_K \rangle, \quad i = 1, \dots, L, \quad j = 1, \dots, N \Longrightarrow \underline{\mathbf{T} \cdot \mathbb{R}^M = \ker(\mathbf{W})}.$

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Avoid setting up Trefftz basis from scratch! $\mathbb{T}^k(\mathcal{T}_h) \subset \mathbb{P}^k$, $M = \dim(\mathbb{T}^k) < \dim(\mathbb{P}^k) = N$

For any basis $\{\psi_j\}$ we have $\psi_j \in \mathbb{P}^k(\mathcal{T}_h) \Rightarrow \psi_j = \sum_{i=1}^N \mathbf{T}_{ij}\phi_i, \ j = 1, ..., M$, for $\underline{\mathbf{T} \in \mathbb{R}^{N \times M}}$. Let $\mathcal{L} : \mathbb{P}^k(\mathcal{T}_h) \to Q'_h$ with $Q_h = \underset{K \in \mathcal{T}_h}{\times} Q_K = \operatorname{span}\{\varphi_i\}_{i=1,...,L}$. Then with

$$(\mathbf{W})_{ij} = w_h(\phi_j, \varphi_i) = \sum_{K \in \mathcal{T}_h} \langle \mathcal{L}\phi_j, \varphi_i |_K \rangle, \quad i = 1, \dots, L, \quad j = 1, \dots, N \Longrightarrow \underline{\mathbf{T} \cdot \mathbb{R}^M = \ker(\mathbf{W})}.$$

Compute $\ker(\mathbf{W})$ numerically by SVD (or QR):

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Avoid setting up Trefftz basis from scratch! $\mathbb{T}^k(\mathcal{T}_h) \subset \mathbb{P}^k$, $M = \dim(\mathbb{T}^k) < \dim(\mathbb{P}^k) = N$

For any basis $\{\psi_j\}$ we have $\psi_j \in \mathbb{P}^k(\mathcal{T}_h) \Rightarrow \psi_j = \sum_{i=1}^N \mathbf{T}_{ij}\phi_i, \ j = 1, ..., M$, for $\underline{\mathbf{T} \in \mathbb{R}^{N \times M}}$. Let $\mathcal{L} : \mathbb{P}^k(\mathcal{T}_h) \to Q'_h$ with $Q_h = \underset{K \in \mathcal{T}_h}{\times} Q_K = \operatorname{span}\{\varphi_i\}_{i=1,...,L}$. Then with

$$(\mathbf{W})_{ij} = w_h(\phi_j, \varphi_i) = \sum_{K \in \mathcal{T}_h} \langle \mathcal{L}\phi_j, \varphi_i |_K \rangle, \quad i = 1, \dots, L, \quad j = 1, \dots, N \Longrightarrow \underline{\mathbf{T} \cdot \mathbb{R}^M = \ker(\mathbf{W})}.$$

Compute $\ker(\mathbf{W})$ numerically by SVD (or QR):

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Avoid setting up Trefftz basis from scratch! $\mathbb{T}^k(\mathcal{T}_h) \subset \mathbb{P}^k$, $M = \dim(\mathbb{T}^k) < \dim(\mathbb{P}^k) = N$

For any basis $\{\psi_j\}$ we have $\psi_j \in \mathbb{P}^k(\mathcal{T}_h) \Rightarrow \psi_j = \sum_{i=1}^N \mathbf{T}_{ij}\phi_i, \ j = 1, .., M$, for $\underline{\mathbf{T} \in \mathbb{R}^{N \times M}}$. Let $\mathcal{L} : \mathbb{P}^k(\mathcal{T}_h) \to Q'_h$ with $Q_h = \underset{K \in \mathcal{T}_h}{\times} Q_K = \operatorname{span}\{\varphi_i\}_{i=1,..,L}$. Then with

$$(\mathbf{W})_{ij} = w_h(\phi_j, \varphi_i) = \sum_{K \in \mathcal{T}_h} \langle \mathcal{L}\phi_j, \varphi_i |_K \rangle, \quad i = 1, \dots, L, \quad j = 1, \dots, N \Longrightarrow \underline{\mathbf{T} \cdot \mathbb{R}^M = \ker(\mathbf{W})}.$$

Compute $\ker(\mathbf{W})$ numerically by SVD (or QR):

Computations element-by-element (and in parallel), W block-diagonal, orthogonal T-columns

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Setup of Embedded Trefftz DG linear systems

Standard DG setting matrix/vector

 $(\mathbf{A})_{ij} = a_h(\phi_j, \phi_i) \ i, j = 1, \dots, N, \qquad (\boldsymbol{\ell}_h)_i = \ell_h(\phi_i) \ i = 1, \dots, N$

Embedded Trefftz DG linear algebra (example with k = 5)

 $\tilde{\mathbf{A}} \mathbf{w}_{\mathbb{T}} = \mathbf{T}^T \mathbf{A} \mathbf{T} \mathbf{w}_{\mathbb{T}} = \mathbf{T}^T \boldsymbol{\ell}_{\boldsymbol{h}}.$ (assembly still element-by-element / facet-by-facet)

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

So far: Embedded Trefftz DG is (merely) an implementation trick for existing polynomial Trefftz.

So far:

Embedded Trefftz DG is (merely) an implementation trick for existing polynomial Trefftz.

Next:

Claim: Embedded Trefftz DG \ldots

- 1. ... inherites conditioning properties from DG scheme ($\kappa_2(\tilde{\mathbf{A}}) = \kappa_2(\mathbf{T}^T \mathbf{A} \mathbf{T}) \leq \kappa_2(\mathbf{A})$.)
- 2. ... allows to treat inhomogeneous PDEs
- 3. ... allows to conveniently implement weak Trefftz spaces → treat PDEs where no (suitable) polynomial Trefftz spaces exists

Re-introduce local dofs to Trefftz DG

¹¹ A. Lozinski. A primal [dG] method with static condensation on very general meshes., Numerische Mathematik, 2019

¹²C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024

Re-introduce local dofs to Trefftz DG

Space decomposition $V_h = \mathbb{P}^k(\mathcal{T}_h) = \mathbb{T}_h \oplus \mathbb{L}_h$ with (for a suitable space Q_h)

- $\mathcal{L}u_{\mathbb{T}} = 0$ (in Q'_h) for all $u_{\mathbb{T}} \in \mathbb{T}_h$ ((classical) Trefftz functions)
- $\mathcal{L}: \mathbb{L}_h \to Q'_h$ bijective (local functions, solve for inhomogeneous r.h.s.)

 12 C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024

 $^{^{11}}$ A. Lozinski. A primal [dG] method with static condensation on very general meshes., Numerische Mathematik, 2019

Example: Trefftz DG for Poisson

$$\mathcal{L}u = -\Delta u = f$$
 in Ω , $u = g$ on $\partial \Omega$.

DG discretization

Find
$$u_h \in \mathbb{P}^k(\mathcal{T}_h)$$
, s.t. $a_h(u_h, v_h) = \ell_h(v_h)$ $\forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$ with
 $a_h(u, v) = \sum_K \int_K \nabla u \nabla v \ dx + \sum_{F \in \mathcal{F}_h \text{ int}} \int_F -\{\!\!\{\partial_n u\}\!\} [\![v]\!] -\{\!\!\{\partial_n v\}\!\} [\![u]\!] + \alpha k^2 h^{-1} [\![u]\!] [\![v]\!] \ ds + bnd.$

¹²C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods – C. Lehrenfeld Example: Trefftz DG for Poisson

$$\mathcal{L}u = -\Delta u = f$$
 in Ω , $u = g$ on $\partial \Omega$.

DG discretization

Find
$$u_h \in \mathbb{P}^k(\mathcal{T}_h)$$
, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$ with
 $a_h(u, v) = \sum_K \int_K \nabla u \nabla v \, dx + \sum_{F \in \mathcal{F}_h^{\text{int}}} \int_F -\{\!\{\partial_n u\}\!\} \llbracket v \rrbracket -\{\!\{\partial_n v\}\!\} \llbracket u \rrbracket + \alpha k^2 h^{-1} \llbracket u \rrbracket \llbracket v \rrbracket \, ds + bnd.$

Trefftz DG discretization with $\mathbb{P}^k = \mathbb{T}_h \oplus \mathbb{L}_h$, $Q_h = \mathbb{P}^{k-2} = -\Delta \mathbb{P}^k$ We search for $u_h \in \mathbb{P}^k(\mathcal{T}_h)$ with $u_h = u_{\mathbb{T}} + u_{\mathbb{L}}$, where

$$\begin{split} u_{\mathbb{T}} &\in \mathbb{T}_h := \{ v \in \mathbb{P}^k(\mathcal{T}_h), \ -\Delta v = 0 \text{ in } Q'_h \} = \{ v \in \mathbb{P}^k(\mathcal{T}_h), \ -\Delta v = 0 \text{ on each } K \in \mathcal{T}_h \} \subset \mathbb{P}^k(\mathcal{T}_h), \\ u_{\mathbb{L}} \in \mathbb{L}_h : \text{ complementary space to } \mathbb{T}_h \text{ with } -\Delta : \mathbb{L}_h \to \mathbb{P}^{k-2} = Q'_h \text{ bijective (element-wise).} \end{split}$$

¹²C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Example: Trefftz DG for Poisson

$$\mathcal{L}u = -\Delta u = f$$
 in Ω , $u = g$ on $\partial \Omega$.

DG discretization

Find
$$u_h \in \mathbb{P}^k(\mathcal{T}_h)$$
, s.t. $a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in \mathbb{P}^k(\mathcal{T}_h)$ with
 $a_h(u, v) = \sum_K \int_K \nabla u \nabla v \, dx + \sum_{F \in \mathcal{F}_h^{\text{int}}} \int_F -\{\!\{\partial_n u\}\!\} \llbracket v \rrbracket -\{\!\{\partial_n v\}\!\} \llbracket u \rrbracket + \alpha k^2 h^{-1} \llbracket u \rrbracket \llbracket v \rrbracket \, ds + bnd.$

Trefftz DG discretization with $\mathbb{P}^k = \mathbb{T}_h \oplus \mathbb{L}_h$, $Q_h = \mathbb{P}^{k-2} = -\Delta \mathbb{P}^k$ We search for $u_h \in \mathbb{P}^k(\mathcal{T}_h)$ with $u_h = u_{\mathbb{T}} + u_{\mathbb{L}}$, where

$$\begin{split} u_{\mathbb{T}} &\in \mathbb{T}_h := \{ v \in \mathbb{P}^k(\mathcal{T}_h), \ -\Delta v = 0 \text{ in } Q'_h \} = \{ v \in \mathbb{P}^k(\mathcal{T}_h), \ -\Delta v = 0 \text{ on each } K \in \mathcal{T}_h \} \subset \mathbb{P}^k(\mathcal{T}_h), \\ u_{\mathbb{L}} \in \mathbb{L}_h : \text{ complementary space to } \mathbb{T}_h \text{ with } -\Delta : \mathbb{L}_h \to \mathbb{P}^{k-2} = Q'_h \text{ bijective (element-wise).} \end{split}$$

We set $u_{\mathbb{L}} = (-\Delta|_{\mathbb{L}_h \to Q'_h})^{-1}(\Pi^{k-2}f)$ and solve the remaining homogenized Trefftz problem:

Find $u_{\mathbb{T}} \in \mathbb{T}_h$, s.t. $a_h(u_{\mathbb{T}}, v_{\mathbb{T}}) = \ell_h(v_{\mathbb{T}}) - a_h(u_{\mathbb{L}}, v_{\mathbb{T}}) \quad \forall v_{\mathbb{T}} \in \mathbb{T}_h$.

¹²C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Rewrite as Block System with a Local-Global splitting

$$\begin{pmatrix} A_{\mathbb{T}\mathbb{T}} & A_{\mathbb{T}\mathbb{L}} \\ A_{\mathbb{L}\mathbb{T}} & A_{\mathbb{L}\mathbb{L}} \end{pmatrix} \cdot \begin{pmatrix} u_{\mathbb{T}} \\ u_{\mathbb{L}} \end{pmatrix} = \begin{pmatrix} \ell_{\mathbb{T}} \\ \ell_{\mathbb{L}} \end{pmatrix}$$

with

- $A_{LT} = 0$ (globally coupled part does not influence local solution)
- $A_{\mathbb{LL}} = -\Delta|_{\mathbb{L}_h \to Q'_h}$ (element-wise decoupled, can be solved for in parallel)
- $\bullet \ \ell_{\mathbb{L}} = \Pi_{Q_h} f$
- $A_{\mathbb{TT}}$, $A_{\mathbb{TL}}$ and $\ell_{\mathbb{T}}$ are the globally coupled DG parts.
- Large linear systems only have to be solved for \mathbb{T}_h part $(\mathcal{O}(k^{d-1})dofs)$
- Implementation of local solutions can reuse local SVD decomposition of $\mathbf{W}(w_h(\cdot, \cdot))$

¹²C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Rewrite as Block System with a Local-Global splitting

$$\begin{pmatrix} A_{\mathbb{T}\mathbb{T}} & A_{\mathbb{T}\mathbb{L}} \\ A_{\mathbb{L}\mathbb{T}} & A_{\mathbb{L}\mathbb{L}} \end{pmatrix} \cdot \begin{pmatrix} u_{\mathbb{T}} \\ u_{\mathbb{L}} \end{pmatrix} = \begin{pmatrix} \ell_{\mathbb{T}} \\ \ell_{\mathbb{L}} \end{pmatrix}$$

with

- $A_{LT} = 0$ (globally coupled part does not influence local solution)
- $A_{\mathbb{LL}} = -\Delta|_{\mathbb{L}_h \to Q'_h}$ (element-wise decoupled, can be solved for in parallel)
- $\bullet \ \ell_{\mathbb{L}} = \Pi_{Q_h} f$
- $A_{\mathbb{TT}}$, $A_{\mathbb{TL}}$ and $\ell_{\mathbb{T}}$ are the globally coupled DG parts.
- Large linear systems only have to be solved for \mathbb{T}_h part $(\mathcal{O}(k^{d-1})dofs)$
- Implementation of local solutions can reuse local SVD decomposition of $\mathbf{W}(w_h(\cdot, \cdot))$

 \rightsquigarrow Implementation for inhomogeneous problems \bigvee

¹²C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Non-polynomial Trefftz spaces

Many problems don't have suitable polynomial Trefftz spaces Examples: $\mathcal{L} = -\Delta \pm \mathrm{Id}$, $\mathcal{L} = -\Delta + b \cdot \nabla$, $\mathcal{L} = -\mathrm{div}(\alpha \nabla \cdot)$, α not constant

¹³C. J. Gittelson, R. Hiptmair, and I. Perugia, Plane wave [dG] methods: Analysis of the h-version, ESAIM:M2AN, 2009 ¹⁴L.-M. Imbert-Gérard, A. Moiola, P. Stocker, A space-time quasi-Trefftz DG [...], Math. Comp., 2023

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Non-polynomial Trefftz spaces

Many problems don't have suitable polynomial Trefftz spaces Examples: $\mathcal{L} = -\Delta \pm \mathrm{Id}$, $\mathcal{L} = -\Delta + b \cdot \nabla$, $\mathcal{L} = -\mathrm{div}(\alpha \nabla \cdot)$, α not constant

How to do Trefftz in these cases? 13,14

Weak Trefftz condition (the L^2 version)¹⁰

Now, we relax the condition by choice of Q_h ($Q_h = \mathcal{LP}^k(\mathcal{T}_h)$ recovers "strong" Trefftz).

 $\implies \text{Weak Trefftz space:} \quad \mathbb{T}^k(\mathcal{T}_h) = \{ v \in \mathbb{P}^k(\mathcal{T}_h) \mid \Pi_{Q_h} \mathcal{L} v = 0 \}$ with Π_{Q_h} the L^2 projection into Q_h .

Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

¹³C. J. Gittelson, R. Hiptmair, and I. Perugia, Plane wave [dG] methods: Analysis of the h-version, ESAIM:M2AN, 2009 ¹⁴L.-M. Imbert-Gérard, A. Moiola, P. Stocker, A space-time quasi-Trefftz DG [...], Math. Comp., 2023

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Non-polynomial Trefftz spaces

Many problems don't have suitable polynomial Trefftz spaces Examples: $\mathcal{L} = -\Delta \pm \mathrm{Id}$, $\mathcal{L} = -\Delta + b \cdot \nabla$, $\mathcal{L} = -\mathrm{div}(\alpha \nabla \cdot)$, α not constant

How to do Trefftz in these cases? 13,14

Weak Trefftz condition (the L^2 version)¹⁰

Now, we relax the condition by choice of Q_h ($Q_h = \mathcal{LP}^k(\mathcal{T}_h)$ recovers "strong" Trefftz).

 \implies Weak Trefftz space: $\mathbb{T}^k(\mathcal{T}_h) = \{ v \in \mathbb{P}^k(\mathcal{T}_h) \mid \prod_{Q_h} \mathcal{L}v = 0 \}$

with Π_{Q_h} the L^2 projection into Q_h .

 \rightsquigarrow Implementation for non-polynomial Trefftz spaces \checkmark

Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

¹³C. J. Gittelson, R. Hiptmair, and I. Perugia, Plane wave [dG] methods: Analysis of the h-version, ESAIM:M2AN, 2009 ¹⁴L.-M. Imbert-Gérard, A. Moiola, P. Stocker, A space-time quasi-Trefftz DG [...], Math. Comp., 2023

¹⁰C.L., P. Stocker. Embedded Trefftz Discontinuous Galerkin methods. IJNME, 2023.

Stability analysis of Embedded Trefftz DG

We solve for $u_h = u_{\mathbb{T}} + u_{\mathbb{L}}$: Find $u_h \in V_h$ s.t.

 $B_h(u_h,(q_h,v_{\mathbb{T}})) := \underbrace{\langle \mathcal{L}u_h,q_h \rangle}_{\langle \mathcal{D}u \in \mathcal{L}u_{\mathbb{L}},q_h \rangle} + a_h(u_h,v_{\mathbb{T}}) = \langle f,q_h \rangle + \ell_h(v_h) \quad \forall \ (q_h,v_h) \in Q_h \times \mathbb{T}_h.$

¹²C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024

 $¹⁵_{\text{inf-sup stability suffices}}$

Stability analysis of Embedded Trefftz DG

We solve for $u_h = u_{\mathbb{T}} + u_{\mathbb{L}}$: Find $u_h \in V_h$ s.t.

$$B_{h}(u_{h},(q_{h},v_{\mathbb{T}})) := \underbrace{\langle \mathcal{L}u_{h},q_{h} \rangle}_{\langle \mathcal{L}u_{\mathbb{T}} \not \in \mathcal{L}u_{\mathbb{L}},q_{h} \rangle} + a_{h}(u_{h},v_{\mathbb{T}}) = \langle f,q_{h} \rangle + \ell_{h}(v_{h}) \quad \forall \ (q_{h},v_{h}) \in Q_{h} \times \mathbb{T}_{h}.$$

Assume:

- local stability: $\|\mathcal{L}u_{\mathbb{L}}\|_{Q'_h} \simeq \|u_{\mathbb{L}}\|_h, \ u_{\mathbb{L}} \in \mathbb{L}_h$
- coercivity¹⁵ on \mathbb{T}_h : $a_h(u_{\mathbb{T}}, u_{\mathbb{T}}) \ge \alpha \|u_{\mathbb{T}}\|_h^2$, $u_{\mathbb{T}} \in \mathbb{T}_h$
- continuity: $a_h(u_{\mathbb{L}}, u_{\mathbb{T}}) \leq \tilde{\beta} ||u_{\mathbb{L}}||_h ||u_{\mathbb{T}}||_h \leq \beta ||\mathcal{L}u_{\mathbb{L}}||_{Q'_h} ||u_{\mathbb{T}}||_h$

¹² C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024

 $¹⁵_{\rm inf-sup \ stability \ suffices}$

Stability analysis of Embedded Trefftz DG

We solve for $u_h = u_{\mathbb{T}} + u_{\mathbb{L}}$: Find $u_h \in V_h$ s.t.

$$B_{h}(u_{h},(q_{h},v_{\mathbb{T}})) := \underbrace{\langle \mathcal{L}u_{h},q_{h} \rangle}_{\langle \mathcal{L}u_{\mathbb{T}} \notin \mathcal{L}u_{\mathbb{L}},q_{h} \rangle} + a_{h}(u_{h},v_{\mathbb{T}}) = \langle f,q_{h} \rangle + \ell_{h}(v_{h}) \quad \forall \ (q_{h},v_{h}) \in Q_{h} \times \mathbb{T}_{h}.$$

Assume:

- local stability: $\|\mathcal{L}u_{\mathbb{L}}\|_{Q'_h} \simeq \|u_{\mathbb{L}}\|_h, \ u_{\mathbb{L}} \in \mathbb{L}_h$
- coercivity¹⁵ on \mathbb{T}_h : $a_h(u_{\mathbb{T}}, u_{\mathbb{T}}) \ge \alpha ||u_{\mathbb{T}}||_h^2, u_{\mathbb{T}} \in \mathbb{T}_h$
- continuity: $a_h(u_{\mathbb{L}}, u_{\mathbb{T}}) \leq \tilde{\beta} \|u_{\mathbb{L}}\|_h \|u_{\mathbb{T}}\|_h \leq \beta \|\mathcal{L}u_{\mathbb{L}}\|_{Q'_h} \|u_{\mathbb{T}}\|_h$

Choosing $q_h = \gamma R_{Q_h} \mathcal{L} u_{\mathbb{L}}$ and $v_{\mathbb{T}} = u_{\mathbb{T}}$ yields

$$\begin{split} B_{h}(u_{h},(q_{h},v_{\mathbb{T}})) &= B_{h}(u_{h},(\gamma R_{Q_{h}}\mathcal{L}u_{\mathbb{L}},u_{\mathbb{T}})) = \gamma \langle \mathcal{L}u_{\mathbb{L}}, R_{Q_{h}}\mathcal{L}u_{\mathbb{L}} \rangle + a_{h}(u_{\mathbb{T}},u_{\mathbb{T}}) + a_{h}(u_{\mathbb{L}},u_{\mathbb{T}}) \\ &\geq \gamma \|\mathcal{L}u_{\mathbb{L}}\|_{Q_{h}'}^{2} + \alpha \|u_{\mathbb{T}}\|_{h}^{2} - \beta \|u_{\mathbb{T}}\|_{h} \|\mathcal{L}u_{\mathbb{L}}\|_{Q_{h}'} \geq (\gamma - \frac{\beta^{2}}{2\alpha})\|\mathcal{L}u_{\mathbb{L}}\|_{Q_{h}'}^{2} + \frac{\alpha}{2}\|u_{\mathbb{T}}\|_{h}^{2} \\ &\gtrsim \|\mathcal{L}u_{\mathbb{L}}\|_{Q_{h}'}^{2} + \|u_{\mathbb{T}}\|_{h}^{2} \gtrsim \underbrace{\left(\|\mathcal{L}u_{\mathbb{L}}\|_{Q_{h}'}^{2} + \|u_{\mathbb{T}}\|_{h}^{2}\right)^{\frac{1}{2}}}_{\simeq \|u_{h}\|_{h}} \|(q_{h},v_{\mathbb{T}})\|_{Q_{h}\times\mathbb{T}_{h}} \end{split}$$

 12 C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024

 15 inf-sup stability suffices

A priori error estimates of Embedded Trefftz DG

Classical Trefftz $DG^{10,16}$

Classical Trefftz DG estimates are of the form

$$\|u-u_h\|_h \lesssim \inf_{v_h \in \mathbb{T}_h + u_h^p} \|u-v_h\|_h$$

with $u_h^p \in V_h$ a particular solution to $\mathcal{L}u_h \approx f$ and the need to construct a suitable interpolation in the Trefftz space (often averaged Taylor polynomials).

Theorem¹² From stability (last slide), consistency and continuity we obtain (Céa):

$$\|u-u_h\|_h \lesssim \inf_{v_h \in V_h} \|u-v_h\|_h$$

Method exploits local/global splitting, but approximation problem is on the whole space.

 $¹⁰_{C.L.}$ P. Stocker. Embedded Trefftz Discontinuous Galerkin methods, IJNME, 2022

¹² C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024

¹⁶ C.L., P. L. Lederer, P. Stocker, Trefftz [DG] discretization for the Stokes problem, Numerische Mathematik, 2024

Trefftz DG for scalar PDEs

$$\beta \cdot \nabla u + \gamma u = f$$
 in $\Omega \quad \rightsquigarrow$ "prototype" operator $\overline{\mathcal{L}}_K$

We obtain optimal a priori error estimates (as for DG)

¹²C.L., P. Stocker, I. Voulis. A unified framework for Trefftz-like discretization methods, in preparation, 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Example Application Fields for Higher Order Finite Element Methods

The Roles of Unknowns in Conforming FEM: A Local-Global Splitting

Unknowns in Non-conforming FEM (DG)

Hybridization and a Local-Global Splitting for DG methods

Trefftz-like DG Methods Classical Trefftz DG Methods Generalizations: Embeddings and a Local-Global Splitting

Conclusion & Outlook

% Embedded/Weak Trefftz DG as a general purpose discretization:

-) inhomogeneous r.h.s. 🔽
- PDE operators with non-polynomial kernels (e.g. non-constant coefficients)

Vectorial and mixed PDE problems (Stokes 🔽)

- G Computational costs (sparsity) similar to Hybrid DG
 - ✓ Combines naturally with some stabilizations (e.g. ♥ -penalty)
 ✓ Allows reducing FE space locally w.r.t. other constraints (tang.)

(b) time-dependent PDEs (with time-stepping; e.g. Navier-Stokes)

🔄 nonlinear PDEs (stationary Navier-Stokes) 🔬

conforming Trefftz methods ^{**}
(generic basis fcts. through "moments" and kernel property)
Implementation of C¹ elements (e.g. Argyris) in a generic framework
(relaxed) H(div)-conforming Stokes-Trefftz

 ${\cal H}^1$ elements with local bubbles "eliminated the Trefftz way"

(b) time-dependent PDEs (with time-stepping; e.g. Navier-Stokes)

inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Stokes)
 inonlinear PDEs (stationary Navier-Sto

Comparison algorithmic complexity: DG-HDG-Trefftz DG
 Sparsity comparison on polytopal meshes
 Trefftz DG for Stokes

Algorithmic complexity: A rough comparison

• direct solver • $N_{\rm el} := \# \mathcal{T}_h \sim h^{-d}$ • k-scaling (no constants)				
			Embedded	
<u>Costs:</u>	Standard DG	Trefftz DG	Trefftz DG	Hybrid DG
Vector representation:				
total ndofs stored	$\sim N_{ m el}k^d$	$\sim N_{ m el}k^{d-1}$	$\sim N_{ m el}k^d$	$\sim N_{ m el}k^d$
globally coupled ${\tt ndofs}$	$\sim N_{ m el}k^d$	$\sim N_{ m el}k^{d-1}$	$\sim N_{ m el} k^{d-1}$	$\sim N_{ m el}k^{d-1}$
Additional costs:			Setup \mathbf{T} :	static cond.:
			$\sim N_{ m el}k^{3d}$	$\sim N_{ m el}k^{3d}$
Global linear systems:				
global matrix	\mathbf{A}	\mathbf{A}	$\mathbf{T}^T \mathbf{A} \mathbf{T}$	\mathbf{S}
nzes	$\sim N_{ m el} k^{2d}$	$\sim N_{\rm el} k^{2d-2}$	$\sim N_{ m el}k^{2d-2}$	$\sim N_{ m el} k^{2d-2}$

Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Sparsity comparison: on (periodic) triangles

¹⁷C.L., P. Stocker, M. Zienecker, Sparsity comparison of polytopal finite element methods, PAMM 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Sparsity comparison: on (periodic) quadrilaterals

¹⁷C.L., P. Stocker, M. Zienecker, Sparsity comparison of polytopal finite element methods, PAMM 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Sparsity comparison: on (periodic) hexagons

¹⁷C.L., P. Stocker, M. Zienecker, Sparsity comparison of polytopal finite element methods, PAMM 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Sparsity comparison: on (periodic) tetrahedra

¹⁷C.L., P. Stocker, M. Zienecker, Sparsity comparison of polytopal finite element methods, PAMM 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Sparsity comparison: on (periodic) hexahedra

¹⁷C.L., P. Stocker, M. Zienecker, Sparsity comparison of polytopal finite element methods, PAMM 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Sparsity comparison: on (periodic) octahedra

¹⁷C.L., P. Stocker, M. Zienecker, Sparsity comparison of polytopal finite element methods, PAMM 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

Sparsity comparison: on (periodic) truncated octahedra

¹⁷C.L., P. Stocker, M. Zienecker, Sparsity comparison of polytopal finite element methods, PAMM 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld

¹⁶C.L., P. L. Lederer, P. Stocker, Trefftz (DG) discretization for the Stokes problem, Numerische Mathematik, 2024 Tuning the Role of Unknowns in Higher Order Finite Element Methods - C. Lehrenfeld