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Motivation: unfitted finite element methods
What is it ? Why is it interesting ?
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Motivation: Two phase flow problems (e.g. oil droplet in water)

Γ

Ω1

Ω2

bulk PDEs

interface conditions

surface PDEs

geometrical evolution

• evolution of complex geometry
• sub-problems are coupled (nonlinear)
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Example configuration (movie) from Aachen (2015)
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Γ

Ω1

Ω2

w1. moving
domains

2. (strong)
deformations 3. topology

changes

remove burden of fitted meshes (generation/tracking/remeshing)
by decoupling mesh and geometry (e.g. level set) ⇝ flexible geometry handling,
New challenges: shape irregular cuts, numerical integration, time integration
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Γ

Ω1

Ω2
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domains⌣

2. (strong)
deformationsÀ

3. topology
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Rough Comparison: fitted and unfitted discretizations

• results for small/no deformation:
• high order accuracy
• efficient linear solver concepts
• robust implementation
• rigorous error analysis, ...

For strong deformation or topology
changes this is much harder.

• Often mesh generation for complex
geometries is very expensive

important key properties of standard FEM
have to be re-established:

• impl. of boundary conditions
• robust numerical integration
• linear solver concepts
• stable (time) discretization

• suitable for strong deform./ topo. changes
• mesh generation “for free”

⇝ Assumption: we are convinced that going unfitted is an interesting idea.
How to make it work?
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Time integration for unfitted FEM
Why is time integration an issue?
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Time discretization for problems on evolving geometries

x

t

Naive method of lines is not applicable!

unfitted

Alternatives:

• Use characteristics u̇ = ∂u
∂t +w · ∇u 1,2

• Separate domains via a space-time formulation3

• Extend solutions to neighborhood4

(✗) (framework)
✓

✓

1P. Hansbo, M. Larson, S. Zahedi. Characteristic Cut FEM for Convection-Diffusion Problems on Time Dependent Surfaces, CMAME, 2015
2Q.Z. Chuwen Ma, W, Zhen. A high-order fictitious-domain method for the adv.-diff. eq. on time-varying dom., arXiv:2104.01870, 2021
3C.L., A. Reusken, Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems, SINUM, 2013
4C.L., M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019 6
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Model problem for the remainder (single phase)

Ω(t2)

Ω(t1) Ω̃

∂Ω(t1)

∂Ω(t2)w

∂tu−∆u+w · ∇u = f in Ω(t), t ∈ [0,T],
∇ ·w = 0 in Ω(t), t ∈ [0,T],

∇u · n∂Ω = 0 on ∂Ω(t), t ∈ [0,T],
u(·, t = 0) = u0 in Ω(t = 0).
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Approach 1:
Eulerian Time Stepping
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Method of lines for unfitted FEM on moving domains

Implicit Euler without care

un −

E

un−1

∆t
+ wn · ∇un − α∆un = 0, on Ωn.

• semi-discrete (discrete in time):
un−1 may not be def. on Ωn

⇝ smoothly ext. un−1: Eun−1∈ H1(

⊃Ωn︷ ︸︸ ︷
Oδ(Ω

n−1))

• fully discrete: Use -penalty stabilization for discrete extension of FE functions

Ωn−1 Ωn

Oδ(Ω
n−1)

T nδ
Onδh

Fnh

4C.L., M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019 8
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Facet -penalty5 on one facet (for extension domain / cut stabilization)

v: piecewise polynomial defined on
macro element ωF := T1 ∪ T2

vi: restriction of v to Ti
JvKωF(x) := v1(x)− v2(x) for x ∈ ωF

defined through polynomial extension.

T1
v1 = v↾T1 v2 = v↾T2

T2
F

Γ

∥v∥2T2 ≤ C
(
∥JvKωF∥2T2 + ∥v∥

2
T1

)
: "control on T2 if T1 and JvKωF controlled6."

-penalty stabilization on one facet F:
∫
ωF

1
h2

JuK2ωF dx

penalizes deviations from a patch-wise polynomial (i.e. h.o. discontinuities).

5E. Burman, Ghost penalty, Comptes Rendus Mathematique, 2010
6independent on varitational form on T2 (cut configuration, etc..)
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Implicit extension from T n to T n
δ

T nδ
Onδh

Fnh

• stepping from tn−1 to tn gives equations for unknowns in “active mesh” T n

• when solving for tn add -penalty stabilization in a δ-layer around ∂Ωn
h

• choose δ sufficiently large so that T n
δ ⊃ Ωn+1

h

4C.L., M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019
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Variational formulation of an implicit Euler step

∫
Ωn

h

unh − un−1
h

∆t
vh+ anh(u

n
h, vh)︸ ︷︷ ︸

convection diffusion bil. form

+jnh(u
n
h, vh) = 0 for all vh ∈ Vn

h(FE Space).

• -penalty stabilization:
jnh(u, v) := γJ ·

(
1+

∆t
h

)
︸ ︷︷ ︸

anisotropy in space-time

∑
F∈F∗,n

R

∫
ωF

1
h2

JuKωFJvKωF dx

• Continuity of (implicit) extension (on Vh):
∥uh∥2Oδh(Ω

n
h)
≤ (1+c∆t)∥uh∥2Ωn

h
+ c∆t∥∇uh∥2Ωn

h
+ c∆t jnh(uh, uh)

• Provable convergence (here: implicit Euler)
∥u(tn)− unh∥Ωn

h
≲ exp(ctn)R(u)( ∆t︸︷︷︸

time
+ hq︸︷︷︸

geometry approx.
+ hk︸︷︷︸

space
· (1+∆t/h)

1
2 )︸ ︷︷ ︸

anisotropy in space-time

4C.L., M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019 11
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Summary: Eulerian time stepping approach

• Simple: only requires spatial integrals / FE spaces

• higher order in time (and space9) possible with BDF-r schemes7

not robust for small diffusion (∇u needed to control extension)
not conservative (extension)⇝ exponential growth in estimates (Gronwall)

• conservative variant (first order only) without analysis8
• works even for topology changes

7Y. Lou, C.L.. Isoparametric unfitted BDF – finite element method for PDEs on evolving domains, SINUM 2022
8M. Olshanskii, H. v. Wahl. A conservative Eulerian finite element method for transport and diffusion in moving domains, arXiv 2024
9several technical details are skipped here...
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Approach 2:
Unfitted Space-time FEM
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Space-time FE spaces using tensor product structure (for interior domain)

x

t
tn

tn−1
Γ∗

Γ∗ Qn

x

t
tn

tn−1
Γ∗

Γ∗ E(Qn)

• Space-time prisms Qn
T = T × In for T ∈ T̃h (“active mesh”)

• Extended time slab: E(Qn)

• Time slab FE space (global FE space discontinuous-in-time):

Wn := Vks
h (E(Ωn))⊗ Pkt((tn−1, tn))

13



Illustration: three time slabs

Space-Time slabs
14



Illustration: three time slabs

Space-Time slabs (tensor product mesh)
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Illustration: three time slabs and an unfitted geometry

Space-Time level set domain ϕ < 0
14



Space-Time approach 1: Discontinuous-in-time Galerkin scheme

Variational formulation on each time slab (time stepping structure)

Find uh ∈ Wn such that for all vh ∈ Wn holds:
(∂tuh +w · ∇uh, vh)Qn+(∇uh,∇vh)Qn

+
(
un−1
h,+ , vn−1

h,+

)
Ωn−1

+jnh(uh, vh)

= (f , vh)Qn

+
(
un−1
h,− , vn−1

h,+

)
Ωn−1

.

Contributions (

&

as in fitted methods

, for unfitted methods

)
Consistency to PDE

∂tu−∆u+w · ∇u = f in Ω(t), t ∈ [0,T],
∇u · n∂Ω = 0 on ∂Ω(t), t ∈ [0,T],

Upwind stabilization
-penalty stabilization
• in the vicinity of cut prisms
• “glues” polynomials together
• re-enables inverse inequalities
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Space-Time approach 1: Discontinuous-in-time Galerkin scheme
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Space-time -penalties (on facets aligned to cut prisms)

JvKωF(x, t) := v1(x, t)− v2(x, t) defined
through polynomial extension in space. T1

v1 = v↾T1 v2 = v↾T2
T2

F

Γ

Anisotropic space-time stabilization:

jnh(u, v) :=
tn∫

tn−1

γJ ·
(
1+

∆t
h

) ∑
F∈F∗,n

R

∫
ωF

1
h2

JuKωFJvKωF dx dt

9F. Heimann, C.L., J. Preuß. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Stabilization (illustration for spatial 1D configuration)

E(Ω2)

Fn
R Fn,ext

R \Fn
R

t0

t1

t2

t3

t4

tΩ(t)

⋃N
n=1 E(Qn) \ I(Qn) : cut elements⋃N
n=1 E(Qn) : active elements

Fn
R(F

n,ext
R ) : stabilization facets

10F. Heimann, C.L., J. Preuß. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023 17



Space-Time approach 2: Continuous-in-time Galerkin scheme

Variational formulation on each time slab (time stepping structure)
Wn,0 := Vks

h (E(Ωn))⊗ Pkt
0 ((tn−1, tn)); Pkt0 ((tn−1, tn))(tn−1) = 0

Vn := Vks
h (E(Ωn))⊗ Pkt−1((tn−1, tn)), uh,init ∈ Vks

h (E(Ωn)) · ϕ0(t)

Find uh ∈ Wn,init := Wn,0 + uh,init, s.t. for all vh ∈ Vn:

(∂tuh +w · ∇uh, vh)Qn+(∇uh,∇vh)Qn

+jnh(uh, vh)

= (f , vh)Qn .

Contributions

( as in fitted methods, for unfitted methods)
Consistency to PDE

-penalty stabilization5
• as cut stabilization
• as extension mechanism at tn

(similar to Eulerian time stepping)

E(Ωn)

E(Ωn+1)

tn−1

tn

tn+1
Ω(t)
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Stabilization (illustration for spatial 1D configuration, kt = 3)

E+(Q)

Fn,+
R

t0

t1

t2

t3

t4

tΩ(t)
Ω−δ(t1)

Ω+δ(t2)

S(Ωlin,3)
E+(Ωlin,4)

10F. Heimann, C.L., J. Preuß. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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On the unfitted Space-time approaches I/II

Lowest order (kt = 0, DG)
• Yields conservative Eulerian-like method (no ext., space-time quadrature):

one time dof per slab, find unh ∈ Wn = Vks
h (E(Ωn))× P0, s.t. ∀ vh ∈ Wn:

(unh, vh)Ωn+(uh,−w · ∇vh)Qn+(∇uh,∇vh)Qn+jnh(uh, vh) = (f , vh)Qn+
(
un−1
h , vh

)
Ωn−1

.

Linear-in-time (kt = 1) – second order methods

• DG-in-time has two time dofs per step (superconvergence?)
• DG-in-time has provable higher order error bounds

(not optimal analysis results though, see later)
• CG-in-time has one time dof per step

• linear solver costs as for Eulerian time stepping or DG-0
• no error analysis for CG-in-time, yet.
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On the unfitted Space-time approaches II/II

Higher order in time (kt > 1)
• DG-in-time has kt + 1 time dofs per step
• CG-in-time has kt time dofs per step
• Higher order continuity in time can also be imposed:

For kt ≥ 3 Cℓ-continuity in time up to degree ℓ = ⌊kt−1
2 ⌋ can be imposed.

(Galerkin-collocation methods; implementation similar to CG-in-time)
• Example GCC(3):

kt = 3, C1-continuity in time and
two time dofs per step (as many time dofs as DG with kt = 1).

21



Discontinuous-Galerkin-in-Time error bounds (without geometry error)

Theorem (assuming exact geometry handling)
Let kmax = max {ks, kt}. There holds (u: exact solution, uh: discrete solution):

|||u− uh||| ≤ C
(
∆tkt+1/2 +

(
1+

∆t
h

) 1
2
hks
)
∥u∥Hkmax+2(Q) ,

with |||u|||2 :=
N∑

n=1
∆t(∂tu, ∂tu)Qn+J|u|K2+(∇u,∇u)Q, (J|u|K: time jump/trace norm)

Proof(sketch): Main idea follows along the line of standard Upwind DG analyses.
Note: previous analyses3,13 yield also higher order bounds (but weaker norms, different setting).

Formulation involves cut integrals. Higher order realization?

11C.L., A. Reusken. Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems. SINUM, 2013
12J. Preuß, Higher order unfitted isoparametric space-time FEM on moving domains, Ma. thesis, Univ. Göttingen, 2018
13S. Badia, H. Dilip, F. Verdugo, Space-time unfitted finite element methods for time-dependent problems on moving domain, CAMWA, 2023
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Numerical integration on (time-dependent) level set domains

{ϕ(·, tn) < 0}

{ϕ(·, tn−1) < 0}
Ω̃

w

Level set function:

ϕ(x, t)


< 0 x ∈ Ω(t),

= 0 x ∈ ∂Ω(t),

> 0 x ∈ Ω̃ \ Ω(t).

Challenge for unfitted higher order FEM on levelset domains:

How to compute integrals over

Qn =
⋃
t∈In
{(x, t) | ϕ(·, t) < 0}

with higher order?
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Isoparametric unfitted FEM for stationary geometries14

{ϕh = 0}
implicit, higher order

+

{ϕ̂h = 0}
explicit, only 2nd order

Θh−→

Θh({ϕ̂h = 0})
explicit, higher order

Construct parametric mapping Θh of underlying mesh such that ϕ̂h ≈ ϕh ◦Θh :

⇝ dist
(
Γh, ∂

(
Θh(Γ

lin)
))
≤ O(hks+1).

Allows to work with {ϕ̂h = 0} as reference and guarantees robust quadrature.

14C.L., High order unfitted finite element methods on level set domains using isoparametric mappings. CMAME, 2016
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Isoparametric unfitted FEM for stationary problems

• Scalar Interface problem15,16 (Nitsche, -penalty)

• Fictitious domain problem17 (Nitsche, -penalty)

• Stokes Interface problem18 ( ..., Taylor–Hood)

• (Scalar) Surface PDEs19 (Normal extension stabilization)

a priori error bounds for all these discretizations!
Can we design a space-time mesh transformation with the same impact?

15C.L., A. Reusken. Analysis of a high order unfitted finite element method for an elliptic interface problem. IMA J. Numer. Anal., IMA JNA, 2018
16C.L., A. Reusken. L2-estimates for a high order unfitted finite element method for elliptic interface problems. Journal Num. Math., 2018
17C.L.. A higher order isoparametric fictitious domain method for level set domains, Geometrically Unfitted FEM and Appl., Springer, 2017
18P. Lederer, C.-M. Pfeiler, C. Wintersteiger, C.L.. Higher order unfitted FEM for Stokes interface problems. PAMM, 2016
19J. Grande, C.L., A. Reusken. Analysis of a high-order trace finite element method for PDEs on level set surfaces. SINUM, 2018 25
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Construction of space-time mesh transformation (basic idea)

• In the space-time setting, we assume ϕh ∈ Vqs
h ⊗ Pqt(In).

• {ℓ0, . . . , ℓqt} basis of Pqt(In)⇝ ϕh(x, t) =
∑qt

i=0ℓi(t) · ϕi
h(x), for ϕi

h ∈ Vqs
h .

• Then, the isoparametric mapping is

ϕ(x, t) ϕh(x, t)

ϕ0
h(x)

ϕ1
h(x)
. . .

ϕ
qt
h (x)

restrict
approximate Θh,0 = C(ϕ0

h(x), I
1
hϕ

0
h(x), T Γ

h,n)

Θh,1 = C(ϕ1
h(x), I

1
hϕ

1
h(x), T Γ

h,n)

. . .
Θh,qt = C(ϕ

qt
h (x), I

1
hϕ

qt
h (x), T Γ

h,n)

apply C

Θn
h =

∑qt
i=0ℓi(t)Θh,i(x)

sum up

Ωh(t) := Θst
h (Ω

lin(t), t), Qlin,n =
⋃

t∈In
Ωlin(t)× {t}, Qh,n = Θst

h (Q
lin,n).

10F. Heimann, C.L., J. Preuß. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Space-time reference configuration and isoparametric mapping

{ϕ̂h(x, t) = 0}, ϕ̂h(x, t) ∈ V1
h ⊗ Pqt Θh({ϕ̂h(x, t) = 0}), Θh(t) : Ω̃ → Ω̃ ∈ [Vqs

h ]d ⊗ Pqt

piecewise linear-in-space zero level set Θh−→ explicit space-time level set domain
(allows for arbitrary order num. integration)

active space-time mesh E(Qn) mapped mesh
20J. Preuß, Higher order unfitted isoparametric space-time FEM on moving domains, Ma. thesis, Univ. Göttingen, 2018
21F. Heimann and C.L.. Numerical integration on hyperrectangles in isoparametric unfitted finite elements. Proc. ENUMATH 2017, 2019
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Space-time quadrature on a cut reference prism

(f , v)Qh,n =

∫
Qh,n

fvdx =

∫
Qlin,n
|detDΘst

h |(f ◦Θst
h )v̂dx̂, v = v̂ ◦Θst

h

=
∑
T∈Th

∫
Qlin,n∩(T×In)

|detDΘst
h |(f ◦Θst

h )v̂dx̂
t2∗
t1∗

tn−1

tn
Ωlin(ti) ∩ T

T × In

Subdivision strategy before iterated integration

0 0.2 0.4 0.6 0.8 1
x

R∗

1: Set R = {tn−1, tn} (time points w. cut top. changes).
2: for v ∈ V (set of vertices of T) do
3: Search for roots Rv of ϕv : In → R, t 7→ ϕlin(v, t).
4: Set R ← R∪Rv.
5: end for
6: Define R∗ as set of intervals with endpoints according to R.
7: return R∗.
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On isoparametric unfitted space-time FEM

Geometry error analysis22,23

• Higher order geometry approximation error bounds
• Shape regular deformed meshes (bounded on Θn

h)
• Two blending variants:

• Standard blending from cut to uncut elements: can lead to small discontinuities
(away from the cuts) [needs transfer operation between meshes]

• A smooth blending allows to avoid these discontinuities

Unfitted Space-time DG error analysis with geometry error

• Higher order discretization error bounds for bulk PDEs23

• Higher order discretization error bounds for surface PDEs24
22F. Heimann, C.L., Geometrically higher order unfitted space-time methods for PDEs on moving domains: Geometry error analysis, arxiv:2311.02348
23F. Heimann, Higher Order Unfitted Space-Time Finite Element Methods for Moving Domain Problems, PhD thesis, Göttingen, 2025
24A. Reusken, H. Sass, Analysis of a space-time unfitted finite element method for PDEs on evolving surfaces, arXiv:2401.01215 29



Numerical examples
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Numerical example: Moving and deforming kite

23F. Heimann, Higher Order Unfitted Space-Time Finite Element Methods for Moving Domain Problems, PhD thesis, Göttingen, 2025 30



Numerical example: Moving and deforming kite

k = ks = kt = qs = qt, i = is = it, manufactured r.h.s. f .
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10F. Heimann, C.L., J. Preuß. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Numerical example: Moving kite (cont’d)
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Overall, we observe

∥u− uh∥L2(Ω(T)) + ∥u− uh∥L2(L2(Ω(t)),0,T)
= O(hk+1) = O(∆tk+1).

10F. Heimann, C.L., J. Preuß. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Superconvergence investigation (for the kite)

(kt, ks) = (1,3), (2,5) and qt = qs = 3,5
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Result: O(∆tkt+1.8) for DG. For CG no unique result.
10F. Heimann, C.L., J. Preuß. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Colliding circles

• A test case in 2D with topology change:
• Two circles merge and seperate afterwards. Diffusion acts only in the merged

setting.
• This topology change test case in one time step:

10F. Heimann, C.L., J. Preuß. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
34



Numerical Software

Library on top of NGSolve25 for unfitted FEM: ngsxfem26,27

• num. integration on (multiple) level sets
• Cut FE spaces, -penalties, AggFEM,
• space-time finite elements
• (2D / 3D + time) ...
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www.ngsolve.org

26
github.com/ngsxfem/ngsxfem

27C.L., F. Heimann, J. Preuß, H. v. Wahl. ngsxfem : Add-on to NGSolve for geometrically unfitted FEM. joss.03108 (under review), 2021. 35

www.ngsolve.org
github.com/ngsxfem/ngsxfem


Conclusion

Summary

• Time integration on moving domains (in Eulerian frame) is non-trivial
• Strategies for time integration and geometry handling
• Provably stable and higher order accurate

• Eulerian time stepping
• Space-time isoparametric unfitted FEM

• Robust realizations in 2D and 3D (+time) including geometry error analysis
Outlook

• Analysis of Petrov-Galerkin-in-time (CG, GCC, ..) variants
• Efficiency (linear solvers, preconditioners, ...)
• More complex problems (PDE / coupling to evolution / FSI)

Thank you for your attention!
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Illustration: Minimal choice of facet patches
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Γ∗ E(Qn)
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Γ∗ I(Qn)

F∗,n
R := {F ∈ F : F = T1 ∩ T2, T1 ∈ E(Ωn) \ I(Ωn), T2 ∈ E(Ωn)}.

⋃
F∈F∗,n

R

ωF
∂Ω(tn−1)

∂Ω(tn)
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Assumption A.1 for analysis

There exists a mapping (between elements) B : E(Ωn)→ I(Ωn) such that:

• The number of elements T ∈ E(Ωn) that map to a specific element T0 ∈ I(Ωn)

can be bounded independently of h and ∆t, i.e. #(B−1(T0)) ≤ C.
• For T ∈ E(Ωn) \ I(Ωn) let {Ti}Mi=0 be the set of elements that need to be crossed

in order to traverse from TM = T to T0 = B(T). Then the facets
{Ti ∩ Tj | i, j = 1, . . . ,M; i ̸= j} are contained in F∗,n

R .
• The thickness of the layer of cut elements is bounded as

#{T ∈ E(Ωn) \ I(Ωn)} ≤ CB

(
1+

∆t
h

)
with CB independent of h and ∆t.



Illustration of Assumption A.1
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Practical realization of A.1
Expand stabilization to small band inside domain including ≈ as many elements as
are cut by the boundary.



Control on cut elements

Lemma
Under assumption A.1 there exists a constant C > 0 such that for every u ∈ Wh ⊕∇Wh
there holds

∥u∥2E(Qn) ≤ C
(
h2

γJ
jnh(u, u) + ∥u∥2I(Qn)

)
.

Key result for analysis

• bound norm of discrete function on E(Qn) by its norm on I(Qn) plus
corresponding stabilization terms

• allows to extend estimates for finite elements with tensor product structure to
unfitted case



A priori error estimate (no geometry error)

Theorem
Let u be the solution of the continuous problem and uh be the discrete solution. Let
kmax = max {ks, kt} and assume u ∈ Hkmax+2(Q). Then there holds:

|||u− uh||| ≤ C

(
∆tkt+1/2 +

√(
1+

∆t
h

)
hks
)
∥u∥Hkmax+2(Q) ,

(semi-)norm
|·| = . . .

approximation error
inf

wh∈Wh
|u− wh| ≤ C · . . .

discretization error
|u− uh| ≤ C · . . .

∥∂t·∥Q ∆tkt + hks+1 ∆tkt +
√(1+ ∆t

h
) hks
∆t1/2

∥∇·∥Q ∆tkt+1 + hks ∆tkt+1/2 +
√(1+ ∆t

h
)
hks

∥·∥Ω(T) ∆tkt+1/2 +∆t−1/2hks+1 ∆tkt+1/2 +
√(1+ ∆t

h
)
hks



Isoparametric FE-spaces

• integrals calculated w.r.t. piecewise planar reference configuration

∫
Θh(Ωlin)

f dx =

∫
Ωlin

f ◦Θh |det (DΘh)| dy

=
∑
T∈Th

∑
i
ωi |det (DΘh(yi))| f(Θh(yi)).

• leads to isoparametric FE spaces:

Vh = {vh ◦Θ−1
h | vh ∈ Vh}.

where Vh is FE space corresponding to the piecewise planar approximation
with ϕ̂h



Test problem: circle moving through mesh

• space-time interface Γ∗ = ∪t∈(0,T]Γ(t)× {t}, where Γ(t) = {ϕ(·, t) = 0}
• approximation Γ∗,h = ∪t∈(0,T]Γh(t)× {t}, where Γh(t) = Θh(t)(Γlin(t)).
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Discontinuity of mesh deformation between time slabs

Our current contruction does not ensure continuity of Θh between time slabs⇝
possibly Θn

+ ̸= Θn
−.

x

t

tn+1

tn

tn−1

Γh

Q̃n+1

Q̃n Qn
T

Qn+1
TΘn

+

Θn
−

Attention
Variational formulation involves passing on solution on Qn as initial condition for
variational formulation on Qn+1 ⇝ needs treatment !



Isoparametric space-time discretization

Consider integrated by parts version of varitational formulation.
Find u such that for all v:

(u,−∂tv−w · ∇v)Qn+(∇u,∇v)Qn

+
(
un−, vn−

)
Ωn+jnh(u, v) = (f , v)Qn +

(
un−1
− , vn−1

+

)
Ωn−1

.

Transition to isoparametric FEM

• take u, v from isoparametric space-time FE space
Wn,Θh := {v | v(t,Θh(t, x̂)) = v̂(t, x̂) for x̂ ∈ Ωlin(t), with v̂ ∈ Wn}. Here
v̂ : Qn,lin 7→ R function on undeformed mesh.

• approximate integrals by ∫
Qn

f ≈
∫

Θh(Qn,lin)
f , where

Θh(Qn,lin) =
⋃

t∈In Θh(t)
(
Ωlin(t)

)
× {t}.



Changes in variational formulation

(u,−∂tv−w · ∇v)Qn+(∇u,∇v)Qn

+
(
un−, vn−

)
Ωn+jnh(u, v) = (f , v)Qn +

(
un−1
− , vn−1

+

)
Ωn−1

.

• contribution of ‘mesh velocity’:
d
dt
v(t,Θh(t, x̂)) =

∂v̂
∂t

+

(
∂Θh
∂t

)
· (DΘh)

−T∇v̂

• replace un−1
− by projection Pun−1

− that fulfills

Pun−1
− ≈ ûn−1

− ◦ (Θn−1
+ )−1 = un−1

− ◦Θn−1
− ◦ (Θn−1

+ )−1

to treat possible discontinuity of Θ between time slabs.



Numerical experiment

Moving domain: circle

Manufactured solution:

u(x, y, t) = χ(
√
x2 + (y− ρ(t))2)

with

• χ(r) = cos2( πr
2r0 ),r0 = 1/2,

• ρ(t) = 1
π sin(2πt).



Moving circle: L2 norm at final time T,ks = 2, kt = 2

Notation: ∆t = T/nt, ns := spatial refinement level.
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Observed rate: ∥(u− uh)(·,T)∥Ω ≤ C(∆t4 + h3)



Moving circle: Investigate superconvergence

• Choose ks = 3, kt = 1
• But third order approximation of geometry:

ϕh,Θh elements of Vkgeomt ,kgeoms
h with kgeoms = kgeomt = 3.
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Moving circle: Summary of numerical experiments

(semi-)norm
|·| = . . .

approximation error
inf

wh∈Wh
|u − wh| ≤ C · . . .

discretization error
|u − uh| ≤ C · . . .

numerical observation
|u − uh|

∥∂t·∥Q ∆tkt + hks+1 ∆tkt +

√(
1 + ∆t

h

)
hks

∆t1/2
∆tkt + hks+1

∥∇·∥Q ∆tkt+1 + hks ∆tkt+1/2 +

√(
1 + ∆t

h

)
hks ∆tkt+1 + hks

∥·∥Q ∆tkt+1 + hks+1 - ∆tkt+1 + hks+1

∥∇·∥Ω(T) ∆tkt+1/2 + ∆t−1/2hks - ∆tkt+1 + hks

∥·∥Ω(T) ∆tkt+1/2 + ∆t−1/2hks+1 ∆tkt+1/2 +

√(
1 + ∆t

h

)
hks

∆tkt+1+α(kt) + hks+1

α(kt) = 1 for kt = 1, 2
α(kt = 3) > 1/2

• numerical error converges at least as good as the bound for approximation error
• at fixed time T even converges better than approximation error estimate



Moving deforming ellipse: setup

Geometry:

• ϕ(x, y, t) =
√
[ξ(x − x0 − ρx)]2 + [η(y− y0 − ρy)]2 − r0,

• ρx(t) = 1
2 sin(4πt), ρy(t) = sin(2πt),

• ξ(t) = 1− 1
2 sin

2(4πt), η(t) = 1− 1
2 sin

2(2πt)
• x0 = 1, y0 = 1/2 and r0 = 1/3.

Reference solution:

• velocity field w(t) =
(
ρ̇x(t), ρ̇y(t)

)
• u(x, y, t) = χ(ϕ(x, y, t) + r0) with χ(r) = cos2( πr

2r0 )

• final time T = 1/2



Moving deforming ellipse: convergence of time derivative
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• Refinements in time with ks = kt = 2
• Refinements in space with ks = 2, kt = 4 to reduce influence of temporal error



Error analysis



Variational formulation

Summing up over time slabs (Q =
⋃N

n=1Qn):
Find u ∈ Wh such that for all v ∈ Wh there holds

B(u, v) + J(u, v) = f(v)

with

B(u, v) :=
N∑

n=1
(∂tu+w · ∇u, v)Qn +

N∑
n=1

(∇u,∇v)Qn +

N−1∑
n=1

(
JuKn, vn+

)
Ωn +

(
u0+, v0+

)
Ω0 ,

J(u, v) :=
N∑

n=1
jnh(u, v),

f(v) :=
N∑

n=1
(f , v)Qn +

(
u0, v0+

)
Ω0 .



Numerical analysis (similar to Upw. DG analysis for linear hyperbol. prob.)

Main assumptions:

• exact geometry handling
• set of facets F∗,n

R for stabilization sufficiently large

Discrete norms:

|||u|||2 :=
N∑

n=1
∆t(∂tu, ∂tu)Qn+J|u|K2+(∇u,∇u)Q, |||u|||2∗ :=

N∑
n=1

( 1
∆tu, u

)
Qn+J|u|K2∗+(∇u,∇u)Q

with
J|u|K2 :=

N−1∑
n=1

(JuKn, JuKn)Ωn +
(
u0+, u0+

)
Ω0 +

(
uN−, uN−

)
ΩN , J|u|K2∗ :=

N∑
n=1

(
un−, un−

)
Ωn .

With Ghost-penalty: |||u|||2j := |||u|||2 + ∥u∥2J and |||u|||2∗,j := |||u|||2∗ + ∥u∥2J .



Céa-like approach

• Boundedness: (crucial: ∂t acts on Wh only)

B(u, v) ≲ |||u|||∗|||u|||, J(u, v) ≤ ∥u∥J∥v∥, ∀u ∈ Wh + H1(Q), v ∈ Wh.

• Consistency:
B(u− uh, vh)− J(u−uh, vh) = 0 ∀vh ∈ Wh.

• Inf-Sup-Stability: (crucial: ∂tu ∈ Wh)

∀wh ∈ Wh, ∃vh(wh) ∈ Wh, s.t. B(wh, vh(wh))+J(wh, vh(wh)) ≳ |||wh|||j · |||vh(wh)|||j.

Main tool: (restores inverse inequalities)
For wh ∈ Wn ⊕∇Wn: ∥wh∥2E(Qn) ≤ C

(
h2
γJ
jnh(wh,wh) + ∥wh∥2Qn

)
.
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A priori error estimate

Lemma (Céa-like result)
There holds (u: exact solution, uh: discrete solution):

|||u− uh||| ≲ inf
wh∈Wh

(|||u− wh|||+ |||u− wh|||∗ + ∥wh∥J) ,

Theorem
There holds (u: exact solution, uh: discrete solution): Let kmax = max {ks, kt}. Then
there holds:

|||u− uh||| ≤ C

(
∆tkt+1/2 +

√(
1+

∆t
h

)
hks
)
∥u∥Hkmax+2(Q) ,

⇝ suboptimal interpolation results (require high regularity)
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