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Motivation: unfitted finite element methods
What is it ? Why is it interesting ?



Motivation: Two phase flow problems (e.g. oil droplet in water)

bulk PDEs

/ / interface conditions
== surface PDEs

I — geometrical evolution
Qs J

* evolution of complex geometry
e sub-problems are coupled (nonlinear)



Example configuration (movie) from Aachen (2015)

concentration

t=0.55
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With fitted meshes?
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With fitted meshes? ~»  possible, but cumbersome
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Idea of (geometrically) unfitted discretizations:

remove burden of fitted meshes (generation/tracking/remeshing)
by decoupling mesh and geometry (e.g. level set)
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Idea of (geometrically) unfitted discretizations:

remove burden of fitted meshes (generation/tracking/remeshing)

by decoupling mesh and geometry (e.g. level set) ~- flexible geometry handling,
New challenges: shape irregular cuts, numerical integration, time integration




Rough Comparison: fitted and unfitted discretizations

e results for small/no deformation:

! important key properties of standard FEM

0 il Gk Sy have to be re-established:

* efficient linear solver concepts
e robust implementation e impl. of boundary conditions
* rigorous error analysis, ... * robust numerical integration
* linear solver concepts
e stable (time) discretization
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Rough Comparison: fitted and unfitted discretizations

¢ results for small/no deformation:
! important key properties of standard FEM

0 il Gk Sy have to be re-established:

* efficient linear solver concepts

e robust implementation e impl. of boundary conditions

* rigorous error analysis, ... * robust numerical integration
* linear solver concepts

! For strong deformation or topology o gable Gmg) Cseaeten

changes this is much harder.

. e suitable for strong deform./ topo. changes
* Often mesh generation for complex

. . . : [13 77
geometries is very expensive * mesh generation “for free

~ Assumption: we are convinced that going unfitted is an interesting idea.
How to make it work?



Time integration for unfitted FEM
Why is time integration an issue?



Time discretization for problems on evolving geometries

P. Hansbo, M. Larson, S. Zahedi. Characteristic Cut FEM for Convection-Diffusion Problems on Time Dependent Surfaces, CMAME, 2015
Q.Z. Chuwen Ma, W, Zhen. A high-order fictitious-domain method for the adv.-diff. eq. on time-varying dom., arXiv:2104.01870, 2021
C.L., A. Reusken, Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems, SINUM, 2013
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Time discretization for problems on evolving geometries
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Time discretization for problems on evolving geometries

Naive method of lines is not applicable! Alternatives:

P. Hansbo, M. Larson, S. Zahedi. Characteristic Cut FEM for Convection-Diffusion Problems on Time Dependent Surfaces, CMAME, 2015
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Time discretization for problems on evolving geometries

Naive method of lines is not applicable! Alternatives:

* Let mesh follow the geometry (Lagrangian view point) X framework

P. Hansbo, M. Larson, S. Zahedi. Characteristic Cut FEM for Convection-Diffusion Problems on Time Dependent Surfaces, CMAME, 2015
Q.Z. Chuwen Ma, W, Zhen. A high-order fictitious-domain method for the adv.-diff. eq. on time-varying dom., arXiv:2104.01870, 2021
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Time discretization for problems on evolving geometries

Naive method of lines is not applicable! unfitted Alternatives:

e Use characteristics i1 = % +w-Vu b2 (X) (framework)
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Time discretization for problems on evolving geometries

Naive method of lines is not applicable! unfitted Alternatives:

e Use characteristics i1 = % +w-Vu b2 (X) (framework)

* Separate domains via a space-time formulation® v
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Time discretization for problems on evolving geometries

Naive method of lines is not applicable! unfitted Alternatives:

e Use characteristics i1 = % +w-Vu b2 (X) (framework)

* Separate domains via a space-time formulation® v

* Extend solutions to neighborhood* v/

P. Hansbo, M. Larson, S. Zahedi. Characteristic Cut FEM for Convection-Diffusion Problems on Time Dependent Surfaces, CMAME, 2015
Q.Z. Chuwen Ma, W, Zhen. A high-order fictitious-domain method for the adv.-diff. eq. on time-varying dom., arXiv:2104.01870, 2021
C.L., A. Reusken, Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems, SINUM, 2013
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Model problem for the remainder (single phase)

ou—Au+w-Vu=f in Q(t), te0,T],
V-w=0 inQ(t), telo,T],
Vu-npg =0 on 00(t), te0,T],

).

u(-,t=0)=uo inQ(t=0



Approach 1:
Eulerian Time Stepping



Method of lines for unfitted FEM on moving domains

Implicit Euler without care

u — n—1

At
¢ semi-discrete (discrete in time):
u™1 may not be def. on Q"

+w' - Vu" — aAu" =0, on O".

4%, M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019 8



Method of lines for unfitted FEM on moving domains

Implicit Euler with more care
plt — S
At

¢ semi-discrete (discrete in time): —_—
u"~1 may not be def. on Q" ~» smoothly ext. u"~1: Eu"le H (O;(Q" 1))

+w' - Vu" — aAu" =0, on O".

oOn

4C L., M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019 8



Method of lines for unfitted FEM on moving domains

Implicit Euler with more care
_ 5un—1
At

¢ semi-discrete (discrete in time): ,_D/SL
u"~1 may not be def. on Q" ~» smoothly ext. u"~1: Eu"le H (O;(Q" 1))

+w' - Vu" — aAu" =0, on O".

e fully discrete: Use < -penalty stabilization for discrete extension of FE functions
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Facet &-penalty® on one facet (for extension domain / cut stabilization)

v: piecewise polynomial defined on
macro element wg := T17 U Ty

v;: restriction of v to T; = B
[V]we (x) = v1(x) — va(x) for x € wr

V1 =V, Vo = VT, r
defined through polynomial extension.

||v\|%2 <C (H[[V]]wFH%Z + ||VH%1>: "control on T if T; and [v],, controlled®."

5E. Burman, Ghost penalty, Comptes Rendus Mathematique, 2010

6. o . q
independent on varitational form on Ty (cut configuration, etc..)



Facet &-penalty® on one facet (for extension domain / cut stabilization)

v: piecewise polynomial defined on
macro element wg := T17 U Ty

v;: restriction of v to T; = B
[V]we (x) = v1(x) — va(x) for x € wr

V1 =V, Vo = VT, r
defined through polynomial extension.

||v\|%2 <C (H[[V]]wFH%Z + ||VH%1>: "control on T if T; and [v],, controlled®."

1
< -penalty stabilization on one facet F: + / % [[u]]iF dx

WF
penalizes deviations from a patch-wise polynomial (i.e. h.o. discontinuities).

5E. Burman, Ghost penalty, Comptes Rendus Mathematique, 2010

6. o . q
independent on varitational form on Ty (cut configuration, etc..)
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e stepping from t"~! to t" gives equations for unknowns in “active mesh” 7™

4C L., M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019
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Implicit extension from 7" to 7
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\VAVAVAVAVAVA

e stepping from t"~! to t" gives equations for unknowns in “active mesh” 7™
* when solving for t" add < -penalty stabilization in a J-layer around 0}

4C L., M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019
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Implicit extension from 7" to 7

JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVARVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
\VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVANER VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
AVAVAVAVAVAV#X#X#X#X#X#VAVAVAVAV

\VAVAVAVAVAVA

e stepping from t"~! to t" gives equations for unknowns in “active mesh” 7™
* when solving for t" add < -penalty stabilization in a J-layer around 0}
* choose ¢ sufficiently large so that 7' O QZ“

4%, M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019
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Variational formulation of an implicit Euler step

ul — un—l .
/ hThvh + ap(up, vp) +ip(uf,vy) =0 for all v, € V;}(FE Space).
o t —_——
convection diffusion bil. form

* ¢ -penalty stabilization:

fuv=ue (1+35) % [ bl

* 1
FeF" wp
anisotropy in space-time

4%, M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019 1



Variational formulation of an implicit Euler step

ul — un—l .
/ n hTtth - ap (up, vn) +it (U}, vy,) =0 for all v, € V?(FE Space).

h . o .
convection diffusion bil. form

* ¢ -penalty stabilization:

fuv=ue (1+35) % [ bl

* 1
FeF" wp
anisotropy in space-time

* Continuity of (implicit) extension (on V3):

2 2 2 :
[unllo; ony < (1+cAD) |[unllgp + cALl|Vun|gp + cAt jj (un, un)

4%, M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019 1



Variational formulation of an implicit Euler step

ul — un—l
/ i ap(up, vp) +ip(uf,vy) =0 for all v, € V;}(FE Space).
n At N——

h . o .
convection diffusion bil. form

* ¢ -penalty stabilization:

fuv=ue (1+35) % [ bl

* 1
FeF" wp
anisotropy in space-time

* Continuity of (implicit) extension (on V3):
”uhHééh(szg) = (1—i—cAt)HuhHéZ + CAtHVUhHszzg + cAt jp (un, un)
e Provable convergence (here: implicit Euler)

n n k 1
Ju(e") - ufllop S explct)R@)(AL+ AL+ R - (14 At/h)2)

time  geometry approx.  Space ,nichtropy in space-time

4%, M. Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 2019 1




Summary: Eulerian time stepping approach

» Simple: only requires spatial integrals / FE spaces

7Y. Lou, C.L.. Isoparametric unfitted BDF - finite element method for PDEs on evolving domains, SINUM 2022
8M. Olshanskii, H. v. Wahl. A conservative Eulerian finite element method for transport and diffusion in moving domains, arXiv 2024 12

several technical details are skipped here...
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Summary: Eulerian time stepping approach

» Simple: only requires spatial integrals / FE spaces

* higher order in time (and space®) possible with BDF-r schemes’

—1 — ee—— |
A N N

I not robust for small diffusion (Vu needed to control extension)

I not conservative (extension) ~» exponential growth in estimates (Gronwall)
e conservative variant (first order only) without analysis®

* works even for topology changes

7Y. Lou, C.L.. Isoparametric unfitted BDF - finite element method for PDEs on evolving domains, SINUM 2022
SM. Olshanskii, H. v. Wahl. A conservative Eulerian finite element method for transport and diffusion in moving domains, arXiv 2024 12

several technical details are skipped here...



Approach 2:
Unfitted Space-time FEM



Space-time FE spaces using tensor product structure (for interior domain)

t
tn
I, n 7
* Q )
th—1 ] <L x
. t
n
tn—1 - <r x

e Space-time prisms QF =T x I, for T € T, (“active mesh”)
* Extended time slab: £(Q")

* Time slab FE space (global FE space discontinuous-in-time):

W, = VE(E(QM) @ PR ((tn1, tn))

13



Illustration: three time slabs

Space-Time slabs



Illustration: three time slabs

Space-Time slabs (tensor product mesh)

14



Ilustration: three time slabs and an unfitted geometry

%
Z
\/

N
N/
N

Space-Time level set domain ¢ < 0



Space-Time approach 1: Discontinuous-in-time Galerkin scheme

Variational formulation on each time slab (time stepping structure)

Find u; € W, such that for all v;, € W, holds:
(&uh +w - Vuy, Vh)QnJr(VU}” Vvh)Q,l
= (fﬂ Vh)Q“

Contributions (|} as in fitted methods )
K} Consistency to PDE

ou—Au+w-Vu=f in Q(t), t € [0,T],
Vu-ngg =0 on 0€)(t), t€10,T],

15



Space-Time approach 1: Discontinuous-in-time Galerkin scheme

Variational formulation on each time slab (time stepping structure)

Find u; € W, such that for all v;, € W, holds:
(&uh +w - Vuy, Vh)QnJr(VU}” Vvh)Q,l
n—1 ,n—1 n—1
+(uh+7vh+)m_1 = (fvh)Q“+<uh—’vh+>Qn v

Contributions (EJJ&F] as in fitted methods )
K} Consistency to PDE

B3 Upwind stabilization

15



Space-Time approach 1: Discontinuous-in-time Galerkin scheme

Variational formulation on each time slab (time stepping structure)

Find u; € W, such that for all v;, € W, holds:
(8tuh +WwW- Vuh,vh)Qn+(Vuh, Vvh) n

1 1 . 1
+ (u}r: 4 ,Vz o )Qn_l—i_JZ(uh’Vh) (f vh)Q”+ (uh — ’VZ A )Qn—l'

Contributions (EJ&F] as in fitted methods, ] for unfitted methods)
i} Consistency to PDE

o - o

B3 Upwind stabilization

E) < -penalty stabilization
* in the vicinity of cut prisms

* “glues” polynomials together

* re-enables inverse inequalities

15
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Space-time &-penalties (on facets aligned to cut prisms)

[V]ws (x, t) = v1(x,t) — va(x, t) defined
through polynomial extension in space. T, F T,

V1 =V,

Anisotropic space-time stabilization:
t,

Ja(w,v) = /nw-<1+Aht> > /hlz[[u]}wF[[v}]dexdt

FEF" op

th—1

9F. Heimann, C.L., J. Preul. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
16



Stabilization (illustration for spatial 1D configuration)

| ROVE
o Q) t?
e L £(0?) 3
X ]
\\_L |
22 i to

UlrLl E(QM) \ Z(Q") : cut elements

UI,\[:1 £(Q") : active elements

i L FR(FR) : stabilization facets

1OF. Heimann, C.L., J. Preu8. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023 17



Space-Time approach 2: Continuous-in-time Galerkin scheme

Variational formulation on each time slab (time stepping structure)
Wn,O = V;lfs (E(Qn)) &® ’POI((tnfla tn)); P’(gr(unfl 5 tn))(tnfl) =0
Va = Vi (€(QM) @ PX (tao1, ), Uninic € Vi (E(2)) - do(0)

Find up € Wy init := Wn,0 + Up init, S-t. for all vy € Vy:

10F. Heimann, C.L., J. Preul. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023 18



Space-Time approach 2: Continuous-in-time Galerkin scheme

Variational formulation on each time slab (time stepping structure)
Wn,O = V;lfs (E(Qn)) ® 7)0[((tnflv tn))§ Pgr((tnflstn))(tnfl) =0
Vi = VR (E(Q) @ P ((tno1,t0)), Unjinit € Vi (E(QM)) - do(t)
Find up € Wy init := Wn,0 + Up init, S-t. for all vy € Vy:

(Oup +wW - Vuh,vh)Qn+(Vuh, Vvh)Qn =

Contributions ([} as in fitted methods )
B} Consistency to PDE

ou—Au+w-Vu=f in Q(t), t € [0,T],
Vu-ngg =0 on 00)(t), t €10,T],

18



Space-Time approach 2: Continuous-in-time Galerkin scheme

Variational formulation on each time slab (time stepping structure)
Wio = VR (E(QM)) @ PE ((ta—1, tn)) U VR (ET(QT)) X {ta}
Vo i=VE(EQ) ® P N((ta1,0)),  Uninic € VI (E(QY)) - po(t)

Find up € Wy init := Wn,0 + Up init, S-t. for all vy € Vy;:

(Oeun + W - Vup, vip) gn+(Vun, Vvp) gntip (Un, ve) = (V) gn-

Contributions ([} as in fitted methods, FJ for unfitted methods)
B} Consistency to PDE

i (T i1
F1 < -penalty stabilization® Q)" ~--- - - ( ) t
* as cut stabilization % E(Q") .
* n—1

° as extension mechanism at t,
(similar to Eulerian time stepping)

10F. Heimann, C.L., J. Preul. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023 18



Stabilization (illustration for spatial 1D configuration, k. = 3)
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lOFA Heimann, C.L., J. Preu8. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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On the unfitted Space-time approaches I/11

Lowest order (k; = 0, DG)

* Yields conservative Eulerian-like method (no ext., space-time quadrature):
one time dof per slab, find uj € W, = V,Ifs QM) x PO st ¥V vy € Wy

(U Vi) g+ (s =W - VVi) gt (Vith, Vi) gu 4 (un Vi) = (Fvm)got (™), -

20



On the unfitted Space-time approaches I/11

Lowest order (k; = 0, DG)

* Yields conservative Eulerian-like method (no ext., space-time quadrature):
one time dof per slab, find uj € W, = V,Ifs QM) x PO st ¥V vy € Wy

(U, Vi) gn+(Uns =W - VVp) oo +(Vn, Vvi) gntip (Un, ve) = (f, Vh)Qﬂ‘*‘(uzilth)Qn_l-
Linear-in-time (k; = 1) — second order methods
* DG-in-time has two time dofs per step (superconvergence?)
* DG-in-time has provable higher order error bounds
(not optimal analysis results though, see later)

* CG-in-time has one time dof per step

* linear solver costs as for Eulerian time stepping or DG-0
* no error analysis for CG-in-time, yet.
20



On the unfitted Space-time approaches II/11

Higher order in time (k; > 1)
* DG-in-time has k; + 1 time dofs per step
* CG-in-time has k; time dofs per step

* Higher order continuity in time can also be imposed:
For k; > 3 C’-continuity in time up to degree ¢ = L%j can be imposed.
(Galerkin-collocation methods; implementation similar to CG-in-time)
e Example GCC(3):
ke = 3, C'-continuity in time and
two time dofs per step (as many time dofs as DG with k; = 1).

21



Discontinuous-Galerkin-in-Time error bounds (without geometry error)

Theorem (assuming exact geometry handling)

Let kyax = max {ks, k¢}. There holds (u: exact solution, up: discrete solution):

At

1
2
= sl < C(AFH2 4 (14 3 ) 1) felypmneray-

N
with [[uf* = 3 At(du, Ott) g+ [ul*+ (Vu,Vu),,  (u]: time jump,/trace norm)
n=1

Proof (sketch): Main idea follows along the line of standard Upwind DG analyses. []

Note: previous analyses®'? yield also higher order bounds (but weaker norms, different setting).

11%, A. Reusken. Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems. SINUM, 2013

12.]4 Preuf3, Higher order unfitted isoparametric space-time FEM on moving domains, Ma. thesis, Univ. Gottingen, 2018
LS S. Badia, H. Dilip, F. Verdugo, Space-time unfitted finite element methods for time-dependent problems on moving domain, CAMWA, 2023

22



Discontinuous-Galerkin-in-Time error bounds (without geometry error)

Theorem (assuming exact geometry handling)

Let kyax = max {ks, k¢}. There holds (u: exact solution, up: discrete solution):

At

1
2
= sl < C(AFH2 4 (14 3 ) 1) felypmneray-

N
with [[uf* = 3 At(du, Ott) g+ [ul*+ (Vu,Vu),,  (u]: time jump,/trace norm)
n=1

Proof (sketch): Main idea follows along the line of standard Upwind DG analyses. []
Note: previous analyses®'? yield also higher order bounds (but weaker norms, different setting).

Formulation involves cut integrals. Higher order realization?

11%, A. Reusken. Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems. SINUM, 2013

12.]4 Preuf3, Higher order unfitted isoparametric space-time FEM on moving domains, Ma. thesis, Univ. Gottingen, 2018
LS S. Badia, H. Dilip, F. Verdugo, Space-time unfitted finite element methods for time-dependent problems on moving domain, CAMWA, 2023
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Numerical integration on (time-dependent) level set domains

Level set function:

<0 xeQt),
P(x,6) =0 x € dNt),
>0 xe€Q\ Q).
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Numerical integration on (time-dependent) level set domains

Level set function:

<0 xeQt),
P(x,6) =0 x € dNt),
>0 xe€Q\ Q).

Challenge for unfitted higher order FEM on levelset domains:

How to compute integrals over

Qn = U {(X, t) | ¢('7t) < 0}

with higher order? tely

23



Isoparametric unfitted FEM for stationary geometries'*

P

+
~—— ~
{¢n =0} {on =0}
implicit, higher order explicit, only 2" order

14%, High order unfitted finite element methods on level set domains using isoparametric mappings. CMAME, 2016
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Isoparametric unfitted FEM for stationary geometries'*

P TN
( \ / \
\ / . \ / o
N~ - -
{(bh - 0} {(Zgh = 0} (d)]z({(ﬁ)/z — Olf)
implicit, higher order explicit, only 2" order explicit, higher order

Construct parametric mapping Oy, of underlying mesh such that ¢, ~ ¢y, o Oy, :
~ dist (T, @h(rlin)g) < O(hk+1),
Allows to work with {¢y = 0} as reference and ‘guarantees robust quadrature.

14%, High order unfitted finite element methods on level set domains using isoparametric mappings. CMAME, 2016
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Isoparametric unfitted FEM for stationary problems

e Scalar Interface problem!>1° (Nitsche, € -penalty)
e Fictitious domain problem!” (Nitsche, ¢ -penalty)
e Stokes Interface problem!8 ( ..., Taylor-Hood)

 (Scalar) Surface PDEs!®  (Normal extension stabilization)

15
16
17
18

C.L., A. Reusken. Analysis of a high order unfitted finite element method for an elliptic interface problem. IMA J. Numer. Anal., IMA JNA, 2018

C.L., A. Reusken. L2-estimates for a high order unfitted finite element method for elliptic interface problems. Journal Num. Math., 2018

C.L.. A higher order isoparametric fictitious domain method for level set domains, Geometrically Unfitted FEM and Appl., Springer, 2017
P. Lederer, C.-M. Pfeiler, C. Wintersteiger, C.L.. Higher order unfitted FEM for Stokes interface problems. PAMM, 2016

19‘]4 Grande, C.L., A. Reusken. Analysis of a high-order trace finite element method for PDEs on level set surfaces. SINUM, 2018 25
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e Scalar Interface problem!>1° (Nitsche, € -penalty)
e Fictitious domain problem!” (Nitsche, ¢ -penalty)
e Stokes Interface problem!8 ( ..., Taylor-Hood)

 (Scalar) Surface PDEs!®  (Normal extension stabilization)

Higher order a priori error bounds for all these discretizations!

15
16
17
18

C.L., A. Reusken. Analysis of a high order unfitted finite element method for an elliptic interface problem. IMA J. Numer. Anal., IMA JNA, 2018
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Isoparametric unfitted FEM for stationary problems

15,16

* Scalar Interface problem (Nitsche, S -penalty)

e Fictitious domain problem!” (Nitsche, ¢ -penalty)
e Stokes Interface problem!8 ( ..., Taylor-Hood)

 (Scalar) Surface PDEs!®  (Normal extension stabilization)

Higher order a priori error bounds for all these discretizations!

Can we design a space-time mesh transformation with the same impact?

15
16
17
18

C.L., A. Reusken. Analysis of a high order unfitted finite element method for an elliptic interface problem. IMA J. Numer. Anal., IMA JNA, 2018

C.L., A. Reusken. L2-estimates for a high order unfitted finite element method for elliptic interface problems. Journal Num. Math., 2018

C.L.. A higher order isoparametric fictitious domain method for level set domains, Geometrically Unfitted FEM and Appl., Springer, 2017

P. Lederer, C.-M. Pfeiler, C. Wintersteiger, C.L.. Higher order unfitted FEM for Stokes interface problems. PAMM, 2016

19‘]4 Grande, C.L., A. Reusken. Analysis of a high-order trace finite element method for PDEs on level set surfaces. SINUM, 2018 25



Construction of space-time mesh transformation (basic idea)

* In the space-time setting, we assume ¢y, € Vgs ® PU(I).

1OF. Heimann, C.L., J. Preul. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Construction of space-time mesh transformation (basic idea)

* In the space-time setting, we assume ¢y, € Vgs ® PU(I).
* {lo,... lg} basis of PU(I,) ~ ¢p(x,t) = SF 4i(t) - ¢l (x), for ¢l € V.

1OF. Heimann, C.L., J. Preul. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Construction of space-time mesh transformation (basic idea)

* In the space-time setting, we assume ¢y, € Vgs ® PU(I).
* {lo,... lg} basis of PU(I,) ~ ¢p(x,t) = SF 4i(t) - ¢l (x), for ¢l € V.
e Then, the isoparametric mapping is

. apply C sum up
restrict

. $O(x) ---> Opo = C(#(x), [hR (), TE)
approx1mate ’
e !

. . —C ’11 1 ,TF BN m.)
_— Pp(x) w1 = C(0r(3) B By (x), Tr ) h =2 li(t)Oni(x)

LT

B(x,t) — Pp(x, t)
\ ¢;11t(x) g @h,q[ = C(qﬁgt(x)’I}ll¢;llt(x)77;lp ) e -

,n

Q) = oF(@" ()0, Q™ =[] _ 2" x{, Q" =65@™).

OF. Heimann, C.L., J. Preul. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023

1
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Space-time reference configuration and isoparametric mapping

{@n(x,t) = 0}, dn(x,t) € V} @ P On({dn(x,t) = 0}), Ou(t) : @ = Q € [V @ P

o . ‘ On
piecewise linear-in-space zero level set —
(allows for arbitrary order num. integration)
- | |
active space-time mesh £(Q") mapped mesh

20J4 Preuf3, Higher order unfitted isoparametric space-time FEM on moving domains, Ma. thesis, Univ. Gottingen, 2018 27
2

1F. Heimann and C.L.. Numerical integration on hyperrectangles in isoparametric unfitted finite elements. Proc. ENUMATH 2017, 2019



Space-time quadrature on a cut reference prism

Qine)nT
tn
(f @ Qh andX J Qlin,n ‘ detD@ ‘(f GSt)VdX V= ‘A/ © @?lt
t
=> /1 | det DOSY|(f 0 O dx
TET in,nA T><In )

T x I,

28



Space-time quadrature on a cut reference prism

Qine)nT

tn

(e = [ frax= [ |aeeDORif oot v=so6f

=> / | det DOSY|(f 0 O dx
TeT, " Q““ﬂ"ﬂ(TXIn)

Subdivision strategy before iterated integration

T x I,

Set R = {ty_1,t,} (time points w. cut top. changes).
for v € V (set of vertices of T) do
Search for roots R, of ¢, : I, — R, t — ¢ (v, t).
Set R + RUTR,.
end for
Define R* as set of intervals with endpoints according to R.

return R*.
--R* 28
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On isoparametric unfitted space-time FEM

Geometry error analysis???3

* Higher order geometry approximation error bounds

* Shape regular deformed meshes (bounded on ©7)
e Two blending variants:

* Standard blending from cut to uncut elements: can lead to small discontinuities
(away from the cuts) [needs transfer operation between meshes]
* A smooth blending allows to avoid these discontinuities

Unfitted Space-time DG error analysis with geometry error

e Higher order discretization error bounds for bulk PDEs??

e Higher order discretization error bounds for surface PDEs**

22F. Heimann, C.L., Geometrically higher order unfitted space-time methods for PDEs on moving domains: Geometry error analysis, arxiv:2311.02348

22 F. Heimann, Higher Order Unfitted Space-Time Finite Element Methods for Moving Domain Problems, PhD thesis, Gottingen, 2025

24A. Reusken, H. Sass, Analysis of a space-time unfitted finite element method for PDEs on evolving surfaces, arXiv:2401.01215 29



Numerical examples



Numerical example: Moving and deforming kite




Numerical example: Moving and deforming kite

k =ks =k = qs = q, 1 = is = iy, manufactured r.h.s. f.

DG
100 [ 100 C

S 102 ] <
= 04| | 2|
= =
E] 5 106 7
I 106} | [
= =
5 108 1 5 1000 i

10710 1 7 1012 L i

IOF. Heimann, C.L., J. Preu8. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023

31



Numerical example: Moving Kkite (cont’d)

GCC

10° | O(h*) = O(At*) ---
Overall, we observe

lu = unllz2er)) + U — unllz2@).0,1)
= O(h*) = O(AFTY).

[lun(T) = u(T)ll2(0er)

IOF. Heimann, C.L., J. Preu. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Superconvergence investigation (for the kite)

(keyks) = (1,3),(2,5) and gr = g5 = 3,5

1071f ‘ T E i

- 107*¢

= = E ]
5 1073 - 2 1073 E
= = i .
£ 1050 S 1074
= 10 & F ]
i T 105
t‘é 10—7 - < B §
k- = 10°%}
10-° 107 :

Result: O(Atk+18) for DG. For CG no unique result.
1

OF. Heimann, C.L., J. Preu. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Colliding circles

e A test case in 2D with topology change:

* Two circles merge and seperate afterwards. Diffusion acts only in the merged
setting.

* This topology change test case in one time step:

OFA Heimann, C.L., J. Preul. Geometrically Higher Order Unfitted Space-Time Methods for PDEs on Moving Domains, SISC 2023
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Numerical Software

Library on top of NGSolve?® for unfitted FEM: ngsxfem?®27

* num. integration on (multiple) level sets

il

* Cut FE spaces, @ -penalties, AggFEM, K

S
>

D
S
>

A\
AVAVA)
VAV,

N
N
\VAV)

avava

* space-time finite elements

e (2D / 3D + time) ...

BilinearForm(st_fes)

dt(u) \ dQ

(alpha InnerProduct(grad(u), grad(v))) dQ
InnerProduct(w, grad(u)) v dqQ

u \ dOmold

h**(-2) ¢ delta_t h) gamma \

(u u.0ther()) (v v.O0ther()) dw

AN

NN/
QN
VAN
K

%
<S>
XL

N/
2

<J

YAV

Qr

LinearForm(st_fes)
coeff_f v (0]
u_last v dOmold

5}
www.ngsolve.org

6
github.com/ngsxfem/ngsxfem

27%, F. Heimann, J. Preuf, H. v. Wahl. ngsxfem : Add-on to NGSolve for geometrically unfitted FEM. joss.03108 (under review), 2021. 35


www.ngsolve.org
github.com/ngsxfem/ngsxfem

M Conclusion

Summary
* Time integration on moving domains (in Eulerian frame) is non-trivial

 Strategies for time integration and geometry handling
* Provably stable and higher order accurate

* FEulerian time stepping
* Space-time isoparametric unfitted FEM

* Robust realizations in 2D and 3D (+time) including geometry error analysis
Outlook

* Analysis of Petrov-Galerkin-in-time (CG, GCC, ..) variants
* Efficiency (linear solvers, preconditioners, ...)

* More complex problems (PDE / coupling to evolution / FSI)
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M Conclusion

Summary
* Time integration on moving domains (in Eulerian frame) is non-trivial

 Strategies for time integration and geometry handling
* Provably stable and higher order accurate

* FEulerian time stepping
* Space-time isoparametric unfitted FEM

* Robust realizations in 2D and 3D (+time) including geometry error analysis
Outlook

* Analysis of Petrov-Galerkin-in-time (CG, GCC, ..) variants

* Efficiency (linear solvers, preconditioners, ...)

* More complex problems (PDE / coupling to evolution / FSI)

¢« 2 Thank you for your attention! =



Back-up slides



Ilustration: Minimal choice of facet patches

t

tn

th—1 /I - X
. t
n

tn_l / /I * x

Fpt ={FeF : F=T1NTy, T1 € EOQ")\Z(Q"), T2 € E(Q")}.




Assumption A.1 for analysis

There exists a mapping (between elements) B : £(Q") — Z(2") such that:

* The number of elements T € £(Q2") that map to a specific element Ty € Z(Q")
can be bounded independently of h and At, i.e. #(B~!(To)) < C.

* For T € £(") \ Z(Q") let {T;}M be the set of elements that need to be crossed
in order to traverse from Ty, = T to To = B(T). Then the facets
{T;NT;|ij=1,...,M; i #j} are contained in F".

* The thickness of the layer of cut elements is bounded as

#{TeEOQH\Z(OQY} <Cp (1 + Aht>

with Cp independent of h and At.



Ilustration of Assumption A.1

t
th—1 - X
t
th
B
th—1 X

Practical realization of A.1
Expand stabilization to small band inside domain including ~ as many elements as

are cut by the boundary.



Control on cut elements

Lemma
Under assumption A.1 there exists a constant C > 0 such that for every u € Wy, & VW,

there holds

h?% .
el cry < € (St + Iulian )

Key result for analysis

* bound norm of discrete function on £(Q") by its norm on Z(Q") plus
corresponding stabilization terms

* allows to extend estimates for finite elements with tensor product structure to
unfitted case



A priori error estimate (no geometry error)

Theorem
Let u be the solution of the continuous problem and uy, be the discrete solution. Let

kmax = max {ks, k;} and assume u € Hkmax+2(Q). Then there holds:

At
e — sl < € (mw i (1 + h)’l"s) a2

(semi-)norm approximation error discretization error
l=... i et £ Ge e lu—up| <C-...
18-l Atk 4 ket Atk o+ /(1+ 4 2
1V Atk+ 4 R AtV 4 (1 4+ SR
Il Atket1/2 4 Ap=1/2pk+1 | ApkH1/2 4 \/(1 + %)hks




Isoparametric FE-spaces

* integrals calculated w.r.t. piecewise planar reference configuration

[ fax= [ foenitetpon) s

[e) n (Qlin ) Qlin

= > > wildet (DOL())|f(On())-

TeT, i
* leads to isoparametric FE spaces:
—il
Vi ={vhoO; " | vy, € Vu}.

where V}, is FE space corresponding to the piecewise planar approximation
with QZA)h



Test problem: circle moving through mesh

* space-time interface I'x = Uic(o,)I'(t) x {t}, where I'(t) = {¢(-,t) = 0}
* approximation I, , = Ue(0,1)l'n(t) % {t}, where ['(t) = Op(t)(Ilin(t)).

e AR D 5
100 |- k=1 > 9 10 =
- k=2 = 5
102+ k=3 2 107 Seg b
- — k=4 |- 7 = "
£ 104 oadke = o 107t e ]
o — y * AN Ny LR
= e ’ = —6 | h N
5 106 o B ~ 10 o k=1 NG, .
o . ) 2 = k=2 SN
= ,'f,l . P 10-8 H —=— ks:3 So ¥ S~
8 p R R N
10 v . e k=4 Sy
B - 1010 |---- O(kkt1) Yoo
1070 L It il R T - T T 1 1 1 1
102 107! 10° 0 1 2 3 4 5!
At Refinements

Observation: dist (T'y, I, ) < Atketl 4 pltl



Discontinuity of mesh deformation between time slabs

Our current contruction does not ensure continuity of ©; between time slabs ~~
possibly ©7 # O".

t

rh>

thyl

tn

th1

Attention
Variational formulation involves passing on solution on Q" as initial condition for

variational formulation on Q"*! ~~ needs treatment !



Isoparametric space-time discretization

Consider integrated by parts version of varitational formulation.

Find u such that for all v:
(U, =0 — W - V) ou+(VL, V) o

(W V) R Y) = (F)g+ (VAT

Transition to isoparametric FEM

* take u,v from isoparametric space-time FE space
Whe, = {v | v(t,04(t,%)) = ¥(t,x) for x € Qlin(t), with ¥ € W,,}. Here
v: Qv R function on undeformed mesh.
* approximate integrals by [f~ [ f, where
Q" On(Qtin)
OR(QHIM) = Uygy, On(t) (n()) x {t}.



Changes in variational formulation

(U, =0 =W - Vv) ut+(Vit, VV) g

+ (U)o HR W, Y) = (F,V)gn + (u’fl,v’fl)m_l.

* contribution of ‘mesh velocity’:

d . (5} 00y, T
—_ , & R = — _— . D'—‘
dtv(t'()h(t X)) 5t + ( 5% ) (DOp) " Vv

* replace u" ! by projection Pu""! that fulfills
Purifl ~ ﬁrifl @ (@r_:il)—l _ urlfl 8 @rifl @ (@r_:il)—l

to treat possible discontinuity of © between time slabs.



Numerical experiment

Moving domain: circle

Manufactured solution:

u(,y.t) = x(y/22 + (v - p(t))?)

* x(r) = cos?(37),r0 = 1/2,

2r0



10°

[ —un)(, Dllz2q)
=
I\

Observed rate: ||(u — up)(+, T)|lg < C(At* + h3)

At

—— ng=2
-®&- ng=3
s ng=4
—— ng=>5
& —— n;=6
. ---order 3,4 | |
Ll | n n M
102 101

I —un) (5 Tl 2

f|l-—o n.=4
El-= n.=38
Ll n=16
Fl—— n,=32
E|—+— n, =64
F|--- order 2,3

0 1 2 3 4
Refinements n;




Moving circle: Investigate superconvergence

* Choose ks =3, k; =1
* But third order approximation of geometry:

ktgeom 7ksgeom X geom geom
®n, O elements of V, with kg = k¢ =&

1007 //'_/,—///: -
. o P
= ~ 0% 22
= 102F o . e i
=~
= i 1o ng=1
= -4 | i
5 10 Az - =2
:‘! —— ng=3
= 1070 - =4
V’/ —+— ng=5
s ’ ---order 1,2,3
107°E_ 4+ v IR hrarwr T ad
1072 107!

At

Observed rate: ||(u — up)(-, T)||q < CAL.



Moving circle: Summary of numerical experiments

(semi-)norm . approximation error discretization error numerical observation
Fl=ooo | willy, Wl sCoee lu—wl <C- ... lu — |
k.
l18¢-1lg Atke 4 pks+1 Atke 4 \/(1 e Atke 4 pks+1
t
1Vl Atk pks Adket1/2 \/(1 s %)hki Adke+1 4 pks
lI-llg AFFT LT - AT T
IV llom AFFI/2 L A= 172pks 5 Akt 4 ks
AdkeFTFalke) | pks+T
Il Aded1/2 4 Ap=1/2pks 1 [ C Ake+1/2 (1 4 %)hks alk) = 1fork = 1,2

ok = 3) > 1/2

* numerical error converges at least as good as the bound for approximation error

* at fixed time T even converges better than approximation error estimate



Moving deforming ellipse: setup

Geometry:

* D06y, t) = /[ — X0 — p)I? + 1 — Yo — py)]2 — 1o,
* px(t) = 3 sin(4nt), py(t) = sin(2nt),

« £(t) =1— Lsin®(4nmt), n(t) = 1 — 1 sin®(27t)

* xo=1,y0=1/2and ro = 1/3.

Reference solution:

« velocity field w(t) = (p'x(t), py(t))

o u(x,y,t) = x(o(x,y,t) +ro) with x(r) = cosz(z’r—r;)
e final time T = 1/2



Moving deforming ellipse: convergence of time derivative

10% E
g - S 102} ]
=10t ¢ E )
s . 1 S
& 100L 4 & 100t 1
= o ng=2 = —— Ny =
5 : & n; =3 5 = n, =16
I e e ny=4 |4 I Ll =32
2 —— ng=5 |4 2 1007 np =64 3 h
= 102f =6 | = e =128 S
--- order 1,2 |] --- order 2,3 S
1 -4 1
Ll L n M| 10 I I I Il Il Il Il
1072 10! 0 1 2 3 4 5 6
At Refinements ng

¢ Refinements in time with ks = k; = 2

* Refinements in space with k; = 2, k; = 4 to reduce influence of temporal error



Error analysis



Variational formulation

Summing up over time slabs (Q = UZ,Y:1 QM):
Find u € W}, such that for all v € W}, there holds

B(u,v) +J(u,v) =£(v)

with

N N N-1

B(u,v) =) (Qu+W-Vu,v)gu + > (Vit, V)gu + > (Iul" V) o + (4,94 g
n=1 n=1 n=1
N

J(u,v) = ng(u,v),
n=1
N



Numerical analysis  (similar to Upw. DG analysis for linear hyperbol. prob.)

Main assumptions:
* exact geometry handling

* set of facets ™" for stabilization sufficiently large

Discrete norms:

N N
llull = 3 At(Beut, Beut) g+ [ul™+(Vu, Vi) g, lull = 3 (A4 ) g+ [ul2+(V,Vu)g

n=1 n=1
with . .
[ul® = 2:21 (™, [ g + (1) o + (W, 1) o, [ul = 30 (u2,u?) g,

n=1

- 2 2 2 2 2 2
With Ghost-penalty: [[ul[i = [[u||" + [[ull; and {Jufl; = [l + flufl} -



Céa-like approach

¢ Boundedness: (crucial: & acts on Wy only)
B(u,v) < llull Mull, J(u,v) < |ulslvl, VYueWy+H'(Q), v € Wh.

* Consistency:
B(u —up,vp) —J(u—up,vp) =0 Vv, € Wy

* Inf-Sup-Stability: (crucial: du € W)

Vwp € Wy, Ivp(wh) € Wh, s.t. B(wh, vh(wh)) +J (Wh, V(W) 2 [IIwnlll; - [lve (wn)ll;-



Céa-like approach

¢ Boundedness: (crucial: & acts on Wy only)
B(u,v) < llull Mull, J(u,v) < |ulslvl, VYueWy+H'(Q), v € Wh.

* Consistency:
B(u —up,vp) —J(u—up,vp) =0 Vv, € Wy
* Inf-Sup-Stability: (crucial: du € W)
Vwp € Wy, Ivp(wh) € Wh, s.t. B(wh, vh(wh)) +J (Wh, V(W) 2 [IIwnlll; - [lve (wn)ll;-
Main tool: (restores inverse inequalities)

2.
For w, € W,, ® VW,: Hwh||§(QH) <C (%]Z(Wh,wh) + ||WhH(22n) .

t t

M 1 - 2 A P B 9 = [ = A




A priori error estimate

Lemma (Céa-like result)
There holds (u: exact solution, uy: discrete solution):

= sl 5 im

£ — —
winf, (e = will + fluw = wall. + wally)

Theorem
There holds (u: exact solution, up: discrete solution): Let ky,ax = max {ks, k¢}. Then

there holds:

At
e = wall < € (At"f*” “t (1 * h)”*) [tz

~» suboptimal interpolation results (require high regularity)
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