Divergence-free tangential finite element methods for incompressible flows on surfaces

P.L. Lederer¹, <u>C. Lehrenfeld</u>², J. Schöberl¹ October 2nd, 2019

¹Institute for Analysis and Scientific Computing, TU Wien

²Institute for Numerical and Applied Mathematics, University of Göttingen

https://bit.ly/2mrrTWI

(slides)

Problem classes:

- Incompressible flows on surfaces:
 - Vector Laplacian
 - Surface Stokes
 - Surface Navier–Stokes

Discretization goals:

- Tangential FE spaces
- Surface divergence-conforming FEM

Some notation: Surface differential operators

 $\ensuremath{\mathsf{\Gamma}}$ piecewise smooth, connected, 2D,

stationary, oriented surface embedded in \mathbb{R}^3 .

Surface gradient (scalar ϕ):

$$abla_{\Gamma}\phi(x) = \sum_{i=1,2} rac{\partial \phi}{\partial au_i} au_i = P(x)
abla \phi^e(x),$$

 $P(x) = I - \mathbf{n} \otimes \mathbf{n}, \quad (\cdot)^e$: smooth extension

Some notation: Surface differential operators

 Γ piecewise smooth, connected, 2D, stationary, oriented surface embedded in $\mathbb{R}^3.$

Surface gradient (scalar ϕ):

$$abla_{\Gamma}\phi(x) = \sum_{i=1,2} rac{\partial \phi}{\partial au_i} au_i = P(x)
abla \phi^{\mathsf{e}}(x),$$

 $P(x) = I - \mathbf{n} \otimes \mathbf{n}, \quad (\cdot)^e$: smooth extension

Covariant derivative $(u = \sum_{j=1,2} u_j \tau_j)$:

$$abla_{\Gamma} u(x) = \sum_{i,j=1,2} rac{\partial u_j}{\partial au_i} au_j \otimes au_i
onumber \ = P(x)
abla u^e(x) P(x),$$

Surface divergence:

$$\operatorname{div}_{\Gamma} = \operatorname{tr}(\nabla_{\Gamma} u)$$

Surface strain tensor:

$$\varepsilon_{\Gamma}(u) = \frac{1}{2}(\nabla_{\Gamma}u + \nabla_{\Gamma}u^{T})$$

Find $u: \Gamma \to \mathbb{R}^3$ with $u \cdot \mathbf{n} = 0$, s.t.

$$-P\operatorname{div}_{\Gamma}(\varepsilon_{\Gamma}(u))+u=f \quad \text{in } \Gamma,$$
$$u=0 \quad \text{on } \partial\Gamma.$$

with $f \cdot \mathbf{n} = 0$.

Discrete surfaces

Discrete surfaces

Discrete surface $\Gamma_h = \bigcup_{T \in \mathcal{T}_h} T$ is only C^0 . $T = \Phi_T(\hat{T})$ with $\Phi_T : \mathbb{R}^2 \ni \hat{T} \to T \in \mathbb{R}^3$. \rightsquigarrow Discontinuous normal field, i.e. $\mu_1 \neq -\mu_2$ on edges $E \in \mathcal{F}_h$.

Solutions in $H^1_T(\Gamma_h)$:

- Tangential: $u \cdot \boldsymbol{n}_h = 0$
- Tangential continuity: $u_1 \cdot \tau = u_2 \cdot \tau$ and
- (Co-)normal continuity: $u_1 \cdot \mu_1 + u_2 \cdot \mu_2 = 0$.

Vectorial finite elements on surfaces

*H*¹-conforming approaches

Hansbo/Larson/Larsson 2016, Reuther/Voigt 2018, Fries 2018

Olshanskii/Yushutin 2018, Jankuhn/Reusken 2019

Look for 3D solution field in surface FE space

 $u_h \in [S_h^k]^3, \ S_h^k := \{ v_h \in H^1(\Gamma) \mid v_h \mid_{\mathcal{T}} \circ \Phi_{\mathcal{T}} \in \mathbb{P}^k(\hat{\mathcal{T}}) \ \forall \mathcal{T} \in \mathcal{T}_h \}, \ [S_h^k]^3 \subset [H^1(\Gamma)]^3 \supset H^1_{\mathcal{T}}(\Gamma)$

- and implement $u_h \cdot \boldsymbol{n}_h = 0$ through variational formulation:
 - Lagrange multiplier formulation
 - Penalty formulation

Example formulation of the Vector-Laplacian (penalty):

Find $u_h \in [S_h^k]^3$, s.t. for all $v_h \in [S_h^k]^3$ there holds

$$\int_{\Gamma_h} \varepsilon_{\Gamma}(u_h) \colon \varepsilon_{\Gamma}(v_h) \ dx + \int_{\Gamma_h} u_h \cdot v_h \ dx + \int_{\Gamma_h} \rho \ (u_h \cdot \boldsymbol{n}_h)(v_h \cdot \boldsymbol{n}_h) dx = \int_{\Gamma_h} fv_h \ dx$$

Our approach: abandoning H^1 -conformity

Discontinuous tangential FE space

Simple tang. FE space (local coords. $\tau_i = \partial_{\hat{x}_i} \Phi_T / \|\partial_{\hat{x}_i} \Phi_T\|$):

$$\tilde{W}_h := \{ v_h \in L^2_{\mathcal{T}}(\Gamma) \mid v_h |_{\mathcal{T}} = v_1 \cdot \boldsymbol{\tau_1} + v_2 \cdot \boldsymbol{\tau_2}, \ v_i \circ \Phi_{\mathcal{T}} \in \mathbb{P}^k(\hat{\mathcal{T}}) \ \forall \mathcal{T} \in \mathcal{T}_h \}$$

Discontinuous tangential FE space

Simple tang. FE space (local coords. $\tau_i = \partial_{\hat{x}_i} \Phi_T / \|\partial_{\hat{x}_i} \Phi_T\|$):

$$\tilde{W}_h := \{ v_h \in L^2_{\frac{1}{7}}(\Gamma) \mid v_h|_{\mathcal{T}} = v_1 \cdot \tau_1 + v_2 \cdot \tau_2, \ v_i \circ \Phi_{\mathcal{T}} \in \mathbb{P}^k(\hat{\mathcal{T}}) \ \forall \mathcal{T} \in \mathcal{T}_h \}$$

Tangential FE space by Piola transformation:

$$W_h := \{ v_h \in L^2_{\mathcal{T}}(\Gamma) \mid v_h \mid_{\mathcal{T}} = \underbrace{\frac{1}{J_{\mathcal{T}}} \mathcal{F}_{\mathcal{T}}}_{\mathcal{P}_{\mathcal{T}}} \underbrace{v_h \circ \Phi_{\mathcal{T}}^{-1}}_{\hat{v}_h}, \hat{v}_h \in [\mathbb{P}^k(\hat{\mathcal{T}})]^2 \,\forall \mathcal{T} \in \mathcal{T}_h \}$$

with
$$F_T = \Phi'_T(\hat{x}) = \begin{pmatrix} | & | \\ c_1 \tau_1 & c_2 \tau_2 \\ | & | \end{pmatrix}$$
 and $J_T = \sqrt{\det(F_T^T F_T)}, \quad T \in \mathcal{T}_h.$

 \rightsquigarrow tangential FE spaces are easy to construct when leaving H^1 -conformity!

Interior penalty formulation of second order term Averages and jumps:

$$\{\sigma \mu\} := rac{\sigma |_{T_1} \mu_1 - \sigma |_{T_2} \mu_2}{2}$$
 and $\llbracket u \rrbracket := \llbracket u \rrbracket_{\tau} \tau + \llbracket u \rrbracket_{\mu} \overline{\mu}$

$$\llbracket u \rrbracket_{\boldsymbol{\mu}} := u|_{\mathcal{T}_1} \cdot \boldsymbol{\mu}_1 + u|_{\mathcal{T}_2} \cdot \boldsymbol{\mu}_2, \qquad \llbracket u \rrbracket_{\boldsymbol{\tau}} := (u|_{\mathcal{T}_1} - u|_{\mathcal{T}_2}) \cdot \boldsymbol{\tau}, \qquad \overline{\boldsymbol{\mu}} = \frac{1}{2} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_2.$$

DG bilinear form:

$$-\operatorname{div}(\varepsilon_{\Gamma}(u)) \rightsquigarrow a_{h}(u_{h}, v_{h}) := \sum_{T \in \mathcal{T}_{h}} \int_{T} \varepsilon_{\Gamma}(u_{h}) : \varepsilon_{\Gamma}(v_{h}) \, dx + \sum_{E \in \mathcal{F}_{h}} \int_{E} \{\!\!\{-\varepsilon_{\Gamma}(u_{h})\mu\}\!\!\} : [\![v_{h}]\!] \, ds \\ + \int_{E} \{\!\!\{-\varepsilon_{\Gamma}(v_{h})\mu\}\!\!\} : [\![u_{h}]\!] \, ds + \frac{\alpha k^{2}}{h} \int_{E} [\![u_{h}]\!] : [\![v_{h}]\!] \, ds.$$

Hybrid DG formulation for Vector Laplacian

The facet approximation (two-sided view)

 $\lambda_{T_1} := \lambda_{\tau} \tau + \lambda_{\mu} \mu_1$ and $\lambda_{T_2} := \lambda_{\tau} \tau + \lambda_{\mu} \mu_2$ for $\lambda_{\tau}, \lambda_{\mu} \in \Lambda_h^k$,

with Λ_{h}^{k} the space of scalar, discontinuous, piecewise polynomials on the skeleton. HDG jumps (for one element):

$$\llbracket u \rrbracket^{H} := \llbracket u \rrbracket^{H}_{\tau} \tau + \llbracket u \rrbracket^{H}_{\mu} \mu, \qquad \llbracket u \rrbracket^{H}_{\mu} := u|_{\tau} \cdot \mu - \lambda_{\mu}, \qquad \llbracket u \rrbracket^{H}_{\tau} := u|_{\tau} \cdot \tau - \lambda_{\tau}$$
HDG bilinear form:

(allows for static condensation)

$$-\operatorname{div}(\varepsilon_{\Gamma}(u)) \rightsquigarrow a_{h}(u_{h}, v_{h}) := \sum_{T \in \mathcal{T}_{h}} \int_{\mathcal{T}} \varepsilon_{\Gamma}(u_{h}) : \varepsilon_{\Gamma}(v_{h}) \, dx + \int_{\partial \mathcal{T}} (-\varepsilon_{\Gamma}(u_{h})\mu) \cdot \llbracket v_{h} \rrbracket^{H} \, ds \\ + \int_{\partial \mathcal{T}} (-\varepsilon_{\Gamma}(v_{h})\mu) \cdot \llbracket u_{h} \rrbracket^{H} \, ds + \frac{\alpha k^{2}}{h} \int_{\partial \mathcal{T}} \llbracket u_{h} \rrbracket^{H} \cdot \llbracket v_{h} \rrbracket^{H} \, ds.$$

 $\|\nabla_{\Gamma}(u^e - u_h)\|_{\Gamma_h}$ (H1-L/P, k = 3)

 $\|\nabla_{\Gamma}(u^e - u_h)\|_{\Gamma_h}$ (HDG, k = 3)

(only piecewise smooth)

 $\|\nabla_{\Gamma}(u^e - u_h)\|_{\Gamma_h}$ (HDG, k = 3)

Normal-continuity

Piola transformation preserves normal moments \rightsquigarrow We can easily construct $H(\text{div}_{\Gamma})$ -conforming finite elements:

$$V_h^k := W_h^k \cap \{\llbracket u \rrbracket_{\boldsymbol{\mu}} = 0 \,\,\forall \,\, E \in \mathcal{F}_h\}$$

Consequences for (H)DG discretizations:

- For DG: $\llbracket u \rrbracket = \llbracket u \rrbracket_{\tau} \tau$
- For HDG: we can remove λ_{μ} and $\llbracket u \rrbracket^{H} = \llbracket u \rrbracket^{H}_{\tau} \tau$

Vector-Laplacian on the sphere: Comparison of methods

H^1 -conforming 3D approximation vs. HDG 2D approximation

• dofs:

```
Hdiv-DG less than H1 for k \geq 4
```

• gdofs/nze:

(Hdiv-)HDG cheapest for higher order FEM ($k \ge 3, 4$)

- With tweaks ("projected jumps" / superconvergence): (Hdiv-)HDG beats H1-L/P for all orders.
- \rightsquigarrow Advantages in structure properties and computational overhead
- \rightsquigarrow Consider only Hdiv-HDG in the following

details

Unsteady surface Navier–Stokes Find $u: \Gamma \times (0, T] \rightarrow \mathbb{R}^3$ with $u \cdot \mathbf{n} = 0$ on Γ and $p: \Gamma \times (0, T] \rightarrow \mathbb{R}$ s.t.

 $\partial_t u - 2\nu P \operatorname{div}_{\Gamma}(\varepsilon_{\Gamma}(u)) + (u \cdot \nabla_{\Gamma})u + \nabla_{\Gamma} p = f \quad \text{on} \quad \Gamma, \ t \in (0, T],$ $\operatorname{div}_{\Gamma}(u) = 0 \quad \text{on} \quad \Gamma, \ t \in (0, T].$

Unsteady surface Navier-Stokes Find $u: \Gamma \times (0, T] \rightarrow \mathbb{R}^3$ with $u \cdot \mathbf{n} = 0$ on Γ and $p: \Gamma \times (0, T] \rightarrow \mathbb{R}$ s.t.

$$\partial_t u - 2\nu P \operatorname{div}_{\Gamma}(\varepsilon_{\Gamma}(u)) + (u \cdot \nabla_{\Gamma})u + \nabla_{\Gamma} p = f \quad \text{on} \quad \Gamma, \ t \in (0, T],$$

 $\operatorname{div}_{\Gamma}(u) = 0 \quad \text{on} \quad \Gamma, \ t \in (0, T].$

Components of the discretization

• Velocity-pressure coupling: $\dots + \nabla_{\Gamma} p$, $\operatorname{div}_{\Gamma}(u) = 0$ $u_h \in V_h^k \subset H(\operatorname{div}_{\Gamma}), \ p_h \in Q_h = S_h^{k-1} = \operatorname{div}_{\Gamma}(V_h)$

Unsteady surface Navier–Stokes Find $u: \Gamma \times (0, T] \rightarrow \mathbb{R}^3$ with $u \cdot \mathbf{n} = 0$ on Γ and $p: \Gamma \times (0, T] \rightarrow \mathbb{R}$ s.t.

$$\partial_t u - 2\nu P \operatorname{div}_{\Gamma}(\varepsilon_{\Gamma}(u)) + (u \cdot \nabla_{\Gamma})u + \nabla_{\Gamma} p = f \quad \text{on} \quad \Gamma, \ t \in (0, T],$$

 $\operatorname{div}_{\Gamma}(u) = 0 \quad \text{on} \quad \Gamma, \ t \in (0, T].$

Components of the discretization

• Velocity-pressure coupling: $u_h \in V_h^k \subset H(\operatorname{div}_{\Gamma}), \ p_h \in Q_h = S_h^{k-1} = \operatorname{div}_{\Gamma}(V_h)$ • Convection: $\dots + \nabla_{\Gamma} p, \quad \operatorname{div}_{\Gamma}(u) = 0$ $\dots + (u \cdot \nabla_{\Gamma})u + \dots$

Upwinding

Unsteady surface Navier–Stokes Find $u: \Gamma \times (0, T] \to \mathbb{R}^3$ with $u \cdot \mathbf{n} = 0$ on Γ and $p: \Gamma \times (0, T] \to \mathbb{R}$ s.t.

$$\partial_t u - 2\nu P \operatorname{div}_{\Gamma}(\varepsilon_{\Gamma}(u)) + (u \cdot \nabla_{\Gamma})u + \nabla_{\Gamma} p = f \quad \text{on} \quad \Gamma, \ t \in (0, T],$$

 $\operatorname{div}_{\Gamma}(u) = 0 \quad \text{on} \quad \Gamma, \ t \in (0, T].$

Components of the discretization

- Velocity-pressure coupling: $\dots + \nabla_{\Gamma} p$, $\operatorname{div}_{\Gamma}(u) = 0$ $u_h \in V_h^k \subset H(\operatorname{div}_{\Gamma}), \ p_h \in Q_h = S_{L}^{k-1} = \operatorname{div}_{\Gamma}(V_h)$ $\dots + (u \cdot \nabla_{\Gamma})u + \dots$
- Convection:

Upwinding

• Time-stepping:

Operator-splitting

12

 $\partial_{t} u + \dots$

Benefits of *H*(div_r)-conformity

Benefits of *H*(div_r)-conformity

• local mass conservation

(independent of geometry approx.)

• With
$$u_h = \mathcal{P}_T(\hat{u}_h), \ q_h = \hat{q}_h \circ \Phi_T^{-1}$$

$$\begin{split} b_h(u_h, q_h) &:= \sum_T \int_T \operatorname{div}_{\Gamma}(u_h) q_h \, dx \stackrel{\mathcal{P}_T}{=} \sum_T \int_{\hat{T}} |J| \frac{1}{J} \operatorname{div}_{\Gamma}(\hat{u}_h) \hat{q}_h \, d\hat{x} = 0 \quad \forall q_h \in Q_h, \\ \hat{q}_h &= \operatorname{sgn}(J) \operatorname{div}_{\Gamma}(\hat{u}_h) \Longrightarrow \int_T \operatorname{div}_{\Gamma}(\hat{u}_h)^2 \, d\hat{x} = 0 \, \forall T \in \mathcal{T}_h, \\ &\Longrightarrow \operatorname{div}_{\Gamma}(\hat{u}_h) = 0 \Longrightarrow \operatorname{div}_{\Gamma}(u_h) = 0 \text{ pointwise.} \end{split}$$

• normal-continuous (what leaves one element, enters another) :

Benefits of *H*(div_r)-conformity

(Stokes)

• local mass conservation

(independent of geometry approx.)

• pressure robustness: $f = g + \nabla_{\Gamma} \phi$

Benefits of $H(\operatorname{div}_{\Gamma})$ -conformity

(Stokes)

• local mass conservation

(independent of geometry approx.)

• pressure robustness: $f = g + \nabla_{\Gamma} \phi$

$$u_h \in V_h^0$$
, the div.-free subsp. of V_h .
 $a_h(u_h, v_h^0) \underbrace{+b_h(v_h^0, p_h)}_{=0} = (g + \underbrace{\nabla_{\Gamma} \phi, v_h^0}_{=0}) \quad \forall v_h^0 \in V_h^0$

Benefits of *H*(div_Γ)-conformity

(Stokes)

(independent of geometry approx.)

- local mass conservation
- pressure robustness: $f = g + \nabla_{\Gamma} \phi$

 $\begin{array}{l} u_h \in V_h^0, \text{ the div.-free subsp. of } V_h. \\ a_h(u_h, v_h^0) \underbrace{+ b_h(v_h^0, p_h)}_{=0} = (g + \underbrace{\nabla_{\Gamma} \phi, v_h^0}_{=0}) \quad \forall v_h^0 \in V_h^0 \\ u \text{ and } u_h \text{ only depend on } g, \phi \text{ is balanced by } p_h. \end{array}$

 $\|u-u_h\|_V=F(u)$

Benefits of *H*(div_Γ)-conformity

(inherited from flat case)

- local mass conservation
- pressure robustness
- energy stability

Symmetric testing $(v_h = u_h, q_h = -p_h)$:

$$\frac{1}{2}\partial_t(u_h, u_h) + \underbrace{a_h(u_h, u_h)}_{\geq 0} + \underbrace{c_h(u_h; u_h, u_h)}_{?} = (f, u_h)$$

- $c_h(u_h; u_h, u_h) \ge 0$ for all established discretizations
- details depend on discretization (CG/DG/Upw./..)
- Crucial: *u_h* is div.free (and normal continuous)

(independent of geometry approx.)

Kelvin-Helmholtz on a sphere

 $\rightsquigarrow \texttt{https://youtu.be/pgsmzRgG2Ek}$

Self-organization on the Stanford bunny

∽→ https://youtu.be/gxNFa5kIdoA

Conclusion

Construction of tangential and div_Γ-conforming FEM

- H^1 -conf. \rightarrow DG: tangential FEM obtained from Piola
- Piola \rightsquigarrow $H(\operatorname{div}_{\Gamma})$ -conf.($\llbracket u \rrbracket_{\mu} = 0$) \rightsquigarrow div-free, robust
- allows for piecewise smooth and complex surfaces
- discretization is invariant under isometries
- competitive to H^1 -conf. methods (HDG) (2D \leftrightarrow 3D)
- Implementation in NGSolve (http://ngsolve.org)
- Further properties and variants from flat case:
 - low overall dissipation (upwinding is not even necessary)
 - tweaks (red. FE spaces / "proj. jumps" / rel. H(div_Γ)-conf.)

Conclusion

Construction of tangential and $\mathsf{div}_{\Gamma}\text{-}\mathsf{conforming}$ FEM

- H^1 -conf. \rightarrow DG: tangential FEM obtained from Piola
- Piola \rightsquigarrow $H(\operatorname{div}_{\Gamma})$ -conf.($\llbracket u \rrbracket_{\mu} = 0$) \rightsquigarrow div-free, robust
- allows for piecewise smooth and complex surfaces
- discretization is invariant under isometries
- competitive to H^1 -conf. methods (HDG) (2D \leftrightarrow 3D)
- Implementation in NGSolve (http://ngsolve.org)
- Further properties and variants from flat case:
 - low overall dissipation (upwinding is not even necessary)
 - tweaks (red. FE spaces / "proj. jumps" / rel. H(div_Γ)-conf.)

Preprint:

P. Lederer, C.L., J. Schöberl, Divergence-free tangential FEM [...] on surfaces

http://arxiv.org/abs/ 1909.06229

Conclusion

Construction of tangential and $\mathsf{div}_{\Gamma}\text{-}\mathsf{conforming}$ FEM

- H^1 -conf. \rightarrow DG: tangential FEM obtained from Piola
- Piola \rightsquigarrow $H(\operatorname{div}_{\Gamma})$ -conf.($\llbracket u \rrbracket_{\mu} = 0$) \rightsquigarrow div-free, robust
- allows for piecewise smooth and complex surfaces
- discretization is invariant under isometries
- competitive to H^1 -conf. methods (HDG) (2D \leftrightarrow 3D)
- Implementation in NGSolve (http://ngsolve.org)
- Further properties and variants from flat case:
 - low overall dissipation (upwinding is not even necessary)
 - tweaks (red. FE spaces / "proj. jumps" / rel. H(div_Γ)-conf.)

Thank you for your attention!

Preprint:

P. Lederer, C.L., J. Schöberl, Divergence-free tangential FEM [...] on surfaces

http://arxiv.org/abs/ 1909.06229

Backup-Slides

	dof					
k	1	2	3	4	5	
DG	193.5K	387.1K	645.1K	967.7K	1.4M	
HDG	387.1K	677.4K	1M	1.5M	1.9M	
Hdiv-DG	96.8K	241.9K	451.6K	725.8K	1.1M	
Hdiv-HDG	193.5K	387.1K	645.1K	967.7K	1.4M	
H1-L	64.5K	258.1K	580.6K	1M	1.6M	
H1-P	48.4K	193.5K	435.5K	774.2K	1.2M	

			gdof		
k	1	2	3	4	5
DG	193.5K	387.1K	645.1K	967.7K	1.4M
HDG	193.5K	290.3K	387.1K	483.8K	580.6K
Hdiv-DG	96.8K	241.9K	451.6K	725.8K	1.1M
Hdiv-HDG	193.5K	290.3K	387.1K	483.8K	580.6K
H1-L	64.5K	258.1K	451.6K	645.1K	838.7K
H1-P	48.4K	193.5K	338.7K	483.8K	629K

	nze				
k	1	2	3	4	5
DG	4.6M	18.6M	51.6M	116.1M	227.6M
HDG	3.9M	8.7M	15.5M	24.2M	34.8M
Hdiv-DG	2.5M	12M	36.9M	88.3M	180.6M
Hdiv-HDG	3.9M	8.7M	15.5M	24.2M	34.8M
H1-L	1.7M	11.1M	29.7M	48.1M	88.5M
H1-P	1M	6.7M	16.7M	31.1M	49.8M

Projected jumps

Reduce facet space by one order and (L^2) project jumps into $\mathbb{P}^{k-1}(E)$

$$\llbracket u \rrbracket_{\mu}^{H} \rightsquigarrow \Pi_{E}^{k-1}(u|_{\mathcal{T}} \cdot \mu) - \lambda_{\mu}, \qquad \llbracket u \rrbracket_{\tau}^{H} \rightsquigarrow \Pi_{E}^{k-1}u|_{\mathcal{T}} \cdot \tau - \lambda_{\tau}$$

Reduces the number of globally coupled dof.

			gdof		
k	1	2	3	4	5
DG	193.5K	387.1K	645.1K	967.7K	1.4M
HDG	193.5K	290.3K	387.1K	483.8K	580.6K
Hdiv-DG	96.8K	241.9K	451.6K	725.8K	1.1M
Hdiv-HDG	193.5K	290.3K	387.1K	483.8K	580.6K
H1-L	64.5K	258.1K	451.6K	645.1K	838.7K
H1-P	48.4K	193.5K	338.7K	483.8K	629K
PHDG	96.8K	193.5K	290.3K	387.1K	483.8K
Hdiv-PHDG	96.8K	193.5K	290.3K	387.1K	483.8K

			nze		
k	1	2	3	4	5
DG	4.6M	18.6M	51.6M	116.1M	227.6M
HDG	3.9M	8.7M	15.5M	24.2M	34.8M
Hdiv-DG	2.5M	12M	36.9M	88.3M	180.6M
Hdiv-HDG	3.9M	8.7M	15.5M	24.2M	34.8M
H1-L	1.7M	11.1M	29.7M	48.1M	88.5M
H1-P	1M	6.7M	16.7M	31.1M	49.8M
PHDG	967.7K	3.9M	8.7M	15.5M	24.2M
Hdiv-PHDG	967.7K	3.9M	8.7M	15.5M	24.2M